Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2020

4341.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations
SN Partial Differential Equations and Applications, 1 (2) :1–34
2020
Herausgeber: Springer International Publishing

4340.

Aab, Alexander; others
A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory
Astrophys. J., 902 (2) :105
2020

4339.

Kühn, J.; Bartel, A.; Putek, P.
A Thermal Extension of Tellinen's Scalar Hysteresis Model
, Scientific Computing in Electrical Engineering SCEE 2018BandXausMathematics in Industry
Herausgeber: Springer, Berlin
2020

4338.

Kühn, Jan; Bartel, Andreas; Putek, Piotr
A thermal extension of Tellinen’s scalar hysteresis model
In Nicosia, Giuseppe and Romano, Vittorio, Editor, Scientific Computing in Electrical Engineering: SCEE 2018, Taormina, Italy, September 2018ausMathematics in Industry, Seite 55–63
In Nicosia, Giuseppe and Romano, Vittorio, Editor
Herausgeber: Springer Cham
2020

4337.

Kruse, Thomas; Schneider, Judith C; Schweizer, Nikolaus
A toolkit for robust risk assessment using F-divergences
Management Science
2020
Herausgeber: INFORMS Inst. for Operations Res. and the Management Sciences

4336.

Kruse, Thomas; Schneider, Judith; Schweizer, Nikolaus
A toolkit for robust risk assessment using F-divergences
Management Science, 67 (10)
2020
Herausgeber: INFORMS

4335.

Wolf, Julian; Huber, Florian; Erochok, Nikita; Heinen, Flemming; Guérin, Vincent; Legault, Claude Y.; Huber, Stefan M.
Activation of a Metal‐Halogen Bond by Halogen Bonding
Angewandte Chemie International Edition, 59 (38) :16496–16500
2020
ISSN: 1433-7851, 1521-3773

4334.

Glück, Jochen; Weber, Martin R.
Almost interior points in ordered Banach spaces and the long-term behaviour of strongly positive operator semigroups
Studia Math., 254 (3) :237--263
2020

4333.

[german] Zeller, Diana; Bohrmann-Linde, Claudia
Alternative Solarzellen mit Titandioxid - Ein Mentoring Projekt
MNU, 73 (2) :108--112
2020

4332.

Totzeck, Claudia
An anisotropic interaction model with collision avoidance
Kinetic and Related Models, 13 (6) :1219-1242
2020

4331.

Kruse, Thomas; Urusov, Mikhail
Approximating exit times of continuous Markov processes
Discrete and Continuous Dynamical Systems-B, 25 (9) :3631–3650
2020
Herausgeber: American Institute of Mathematical Sciences

4330.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
BNE-Strukturen gemeinsam gestalten. Fachdidaktische Perspektiven und Forschungen zu Bildung für nachhaltige Entwicklung in der Lehrkräftebildung.
Band 13 aus Erziehungswissenschaft und Weltgesellschaft
Kapitel Chemiedidaktik als BNE-Multiplikator - Arbeitskreispraktika zur Erprobung von Schulversuchen und deren Reflexion hinsichtlich des BNE-Bezug., Seite 83-94
Herausgeber: Andreas Keil, Miriam Kuckuck und Mira Faßbender, Waxman, Münster
2020
83-94

ISBN: 978-3-8309-4158-3

4329.

Bohrmann-Linde, Claudia; Kröger, Simone; Siehr (Hrsg.), Ilona
Chemie 2 - Gymnasium G9 NRW
Herausgeber: C.C.Buchner
2020

4328.

Bohrmann-Linde, Claudia; Kröger, Simone; Siehr (Hrsg.), Ilona
Chemie Gesamtband Sek I NRW
Herausgeber: C.C.Buchner
2020

4327.

Tausch, Michael W.
Chemie mit Licht - Innovative Didaktik für Studium und Lehre
Herausgeber: Springer Verlag
2020

ISBN: 978-3-662-60376-5

4326.

Tiemann, Myrel; Clemens, Markus; Schmuelling, Benedikt
Comparison of Conventional and Magnetizable Concrete Core Designs in Wireless Power Transfer for Electric Vehicles
2020 {IEEE} {PELS} Workshop on Emerging Technologies: Wireless Power Transfer ({WoW})
Herausgeber: {IEEE}
November 2020

4325.

Totzeck, Claudia; Wolfram, Marie-Therese
Consensus-Based Global Optimization with Personal Best
Mathematical Biosciences and Engineering, 17 (5) :6026-6044
2020

4324.

Günther, Michael; Höllwiesera, Roman; Knechtli, Francesco
Constrained HMC algorithms for Gauge-Higgs models
, AIP Conference ProceedingsBand2293, Seite 290004
AIP Publishing LLC
2020

4323.

Günther, Michael; Höllwieser, Roman; Knechtli, Francesco
Constrained hybrid Monte Carlo algorithms for Gauge-Higgs models
Computer Physics Communications, 254 :107192
2020
Herausgeber: Elsevier

4322.

Günther, Michael; Höllwieser, Roman; Knechtli, Francesco
Constrained hybrid Monte Carlo algorithms for Gauge-Higgs models
Computer Physics Communications, 254 :107192
2020
Herausgeber: Elsevier

4321.

Günther, Michael; Höllwieser, Roman; Knechtli, Francesco
Constrained hybrid Monte Carlo algorithms for gauge-Higgs models
Computer Physics Communications, 254 :107192
2020
Herausgeber: North-Holland

4320.

De Sterck, H.; Friedhoff, S.; Howse, A. J. M.; MacLachlan, S. P.
Convergence analysis for parallel-in-time solution of hyperbolic systems
Numer. Linear Algebra Appl., 27 (1) :e2271, 31
2020

4319.

De Sterck, H.; Friedhoff, S.; Howse, A. J. M.; MacLachlan, S. P.
Convergence analysis for parallel-in-time solution of hyperbolic systems
Numer. Linear Algebra Appl., 27 (1) :e2271, 31
2020

4318.

De Sterck, H.; Friedhoff, S.; Howse, A. J. M.; MacLachlan, S. P.
Convergence analysis for parallel-in-time solution of hyperbolic systems
Numer. Linear Algebra Appl., 27 (1) :e2271, 31
2020

4317.

Abel, Ulrich; Heilmann, Margareta; Kushnirevych, Vitaliy
Convergence of linking Baskakov-type operators
Periodica Mathematica Hungarica, 80 :280-288
2020