Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2022
4742.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics
2022
Herausgeber: De Gruyter4741.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York4740.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905--966
2022
Herausgeber: Springer US New York4739.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York4738.
Ballaschk, Frederic
Oxidations with Iodine(V) Compounds – From Stoichiometric Compounds to Catalysts
In Ishihara, Kazuaki and Muñiz, Kilian, Editor, Iodine Catalysis in Organic Synthesis
Seite 299–334
Herausgeber: Wiley
1 Edition
2022
299–3344737.
Zang, Martin; Haussmann, Norman; Mease, Robin; Stroka, Steven; Clemens, Markus; Burkert, Amelie; Popp, Alexander; Schmülling, Benedikt
Personenschutz bei induktivem Laden von Fahrzeugbatterien -- Ansätze zur praktikablen Echtzeitbestimmung der magneto-quasistatischen Körperexposition
In Proff, Heike, Editor
Seite 173--194
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2022
173--1944736.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
20224735.
Amin Zargaran, Uwe Janoske
Prediction of the mixing efficiency in rotor-stator system for high viscous mixtures based on a combined Lagrangian particle approach with an Immersed-Boundary Method
September 20224734.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4733.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4732.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4731.
Ehrhardt, Matthias; Günther, Michael
Progress in Industrial Mathematics at ECMI 2021
20224730.
Kääpä, Alex; Kampert, Karl-Heinz; Mayotte, Eric
Propagation of extragalactic cosmic rays in the Galactic magnetic field
PoS, EPS-HEP2021 :088
20224729.
Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press4728.
Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press4727.
Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press4726.
Haussmann, N.; Clemens, M.
Quantifizierung der Unsicherheit bei der Expositionsbestimmung des menschlichen Körpers durch niederfrequente Magnetfelder auf GPUs mit Monte-Carlo Simulationen
URSI e.V. Deutschland 2022 Kleinheubacher Tagung (KHB 2022)
Miltenberg, Germany
Herausgeber: Abstract accepted
20224725.
Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–3294724.
Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–3294723.
Addazi, A.; others
Quantum gravity phenomenology at the dawn of the multi-messenger era-A review
Prog. Part. Nucl. Phys., 125 :103948
20224722.
Reactions with Geminal Diazides: Long Known, Full of Surprises, and New Opportunities
Synthesis, 54 (20) :4447-4460
2022
Herausgeber: Thieme
ISSN: 0039-78814721.
Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :1--13
2022
Herausgeber: SpringerOpen4720.
Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag4719.
Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag4718.
Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems
arXiv preprint arXiv:2206.03772
2022