Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2022
4792.
Bolten, M.; De Sturler, E.; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
20224791.
Frommer, Andreas; Kahl, Karsten; Schweitzer, Marcel; Tsolakis, Manuel
Krylov subspace restarting for matrix Laplace transforms
20224790.
Krutz, Isabel; Zeller, Diana; Bohrmann-Linde, Claudia
Kursbuch Was brennt bei einer Kerze?. Eine Lerneinheit des Konzepts KriViNat
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2022
online4789.
Kaiser, Jennifer; Zeller, Diana; Bohrmann-Linde, Claudia
Kursbuch zum Brausetablettenversuch. Eine Lerneinheit des Konzepts KriViNat
Herausgeber: Chemiedidaktik, Bergische Universität Wuppertal
2022
online4788.
Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with
20224787.
Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal4786.
Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal4785.
Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
arXiv preprint arXiv:2205.03856
April 20224784.
Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active {L}agrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press4783.
Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press4782.
Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press4781.
Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press4780.
[german] Tausch, Michael W.
LED statt Gasbrenner - Mehr Licht für nachhaltigen Chemieunterricht
Chemie in unserer Zeit, 56 (3/2022) :188–196
20224779.
Daners, Daniel; Glück, Jochen; Mui, Jonathan
Local uniform convergence and eventual positivity of solutions to biharmonic heat equations
Differential and Integral Equations, 9/10 :727-756
20224778.
others
Manakov system on metric graphs: Modeling the reflectionless propagation of vector solitons in networks
arXiv preprint arXiv:2206.01283, 479 :128928
Mai 2022
ISSN: 0375-96014777.
Bannenberg, Marcus WFM; Kasolis, Fotios; Günther, Michael; Clemens, Markus
Maximum entropy snapshot sampling for reduced basis modelling
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 41 (3) :954–966
2022
Herausgeber: Emerald Publishing4776.
Bannenberg, Marcus WFM; Kasolis, Fotios; Günther, Michael; Clemens, Markus
Maximum entropy snapshot sampling for reduced basis modelling
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 41 (3) :954–966
2022
Herausgeber: Emerald Publishing4775.
Wahdan, Shayma
Measurements of observables sensitive to colour reconnection in $t\bar{t}$ events with the ATLAS detector at $\sqrt{s}$ = 13 TeV
Bergische Universitaet Wuppertal
20224774.
Jäschke, J.; Skrepek, N.; Ehrhardt, M.
Mixed-Dimensional Geometric Coupling of Port-{Hamiltonian} Systems
IMACM preprint 22/04
Februar 20224773.
Doganay, Onur Tanil; Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael; Totzeck, Claudia
Modeling Minimum Cost Network Flows With Port-Hamiltonian Systems
PAMM
2022
Herausgeber: Wiley4772.
Tordeux, Antoine; Totzeck, Claudia
Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems
20224771.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
Journal of Mathematical Analysis and Applications, 507 (1) :125761
2022
Herausgeber: Academic Press4770.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
Journal of Mathematical Analysis and Applications, 507 (1) :125761
2022
Herausgeber: Academic Press4769.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
Journal of Mathematical Analysis and Applications, 507 (1) :125761
2022
Herausgeber: Academic Press4768.
Günther, Michael; Sandu, Adrian
Multirate linearly-implicit GARK schemes
BIT Numerical Mathematics :869–901
2022
Herausgeber: Springer Netherlands