Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2022

4817.

[german] Zeller, Diana
Heimische Ökosysteme erkunden. Mit Maphub kooperative, ökologische Kartierung umsetzen.
Digital Unterricht Biologie, 1 (1/2022) :10-11
Januar 2022

4816.

[english] Mertineit, Ann-Kathrin; Burdinski, Dirk; Zulauf, Bert; Hackradt, Hans; Meuter, Nico; Bohrmann-Linde, Claudia; Schaper, Klaus
Helping Digital Natives to Become Digital Natives Through Production Standards, Research AND Quality Ssystems?
Seite 3913-3920
2022

ISBN: 978-84-09-45476-1

4815.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups
BIT Numer. Math.
Januar 2022
Herausgeber: Springer
ISSN: 1572-9125

4814.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht

4813.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4812.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4811.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4810.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht

4809.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Ito SDEs on matrix Lie groups (Jan, 10.1007/s10543-021-00905-9, 2022)
BIT Numerical Mathematics, 62 (3) :1093--1093
2022
Herausgeber: SPRINGER VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

4808.

Nowaczyk, Nikolai; Kienitz, Jörg; Acar, Sarp Kaya; Liang, Qian
How deep is your model? Network topology selection from a model validation perspective
Journal of Mathematics in Industry, 12 (1) :1
2022
Herausgeber: Springer Verlag

4807.

Nowaczyk, N.; Kienitz, J.; Acar, S. K.; Liang, Q.
How deep is your model? Network topology selection from a model validation perspective
JMI, 12 (1)
2022

4806.


Hypervalent Iodine-Mediated Azidation Reactions
European Journal of Organic Chemistry (34)
2022
ISSN: 1434-193X

4805.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit Gauging of Electromagneto-Quasistatic Field Formulations
IEEE Transactions on Magnetics, 58 (9) :1--4
2022
Herausgeber: IEEE

4804.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE

4803.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE

4802.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4801.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250--279
2022
Herausgeber: North-Holland

4800.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4799.

Burgmann, Sebastian; Krämer, Veronika; Rohde, Martin; Dues, Michael; Janoske, Uwe
Inner and outer flow of an adhering droplet in shear flow
International Journal of Multiphase Flow, 153 :104140
2022
ISSN: 0301-9322

4798.

Hosfeld, René; Jacob, Birgit; Schwenninger, Felix
Integral input-to-state stability of unbounded bilinear control systems
Math. Control Signals Systems, 34 (2) :273-295
2022

4797.

Schweitzer, Marcel
Integral representations for higher-order Fréchet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
2022

4796.

Tovar, Carmen Maria; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Atmospheric Chemistry and Physics, 22 (10) :6989—7004
Mai 2022
ISSN: 1680-7324

4795.

Cardona, Alejandro L.; Gibilisco, Rodrigo G.; Rivela, Cynthia B.; Blanco, María B.; Patroescu-Klotz, Iulia; Illmann, Niklas; Wiesen, Peter; Teruel, Mariano A.
Kinetics, product distribution and atmospheric implications of the gas-phase oxidation of allyl sulfides by OH radicals
Chemosphere, 288 :132546
Februar 2022
ISSN: 00456535

4794.

Bolten, Matthias; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022

4793.

Bolten, M.; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022