Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2022

4867.

Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 41-51
2022

4866.

Sch\"afers, Torben; Teng, Long
Asymmetry in stochastic volatility models with threshold and time-dependent correlation
Studies in Nonlinear Dynamics \& Econometrics
2022

4865.

Xue, Chaoyang; Ye, Can; Kleffmann, Jörg; Zhang, Chenglong; Catoire, Valéry; Bao, Fengxia; Mellouki, Abdelwahid; Xue, Likun; Chen, Jianmin; Lu, Keding; Zhao, Yong; Liu, Hengde; Guo, Zhaoxin; Mu, Yujing
Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer
Atmospheric Chemistry and Physics, 22 (5) :3149—3167
März 2022
ISSN: 1680-7324

4864.

Rottmann, Matthias; Reese, Marco
Automated Detection of Label Errors in Semantic Segmentation Datasets via Deep Learning and Uncertainty Quantification
2022

4863.

Forget, Nicolas; Gadegaard, Sune Lauth; Klamroth, Kathrin; Nielsen, Lars Relund; Przybylski, Anthony
Branch-and-bound and objective branching with three or more objectives
Computers & Operations Research, 148
2022
ISSN: 0305-0548

4862.

Paquete, Luís; Schulze, Britta; Stiglmayr, Michael; Lourenço, Ana Catarina
Computing Representations using Hypervolume Scalarizations
Computers and Operations Research, 137 :105349
2022

4861.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4860.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4859.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4858.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation Matrices Driven by Stochastic Isospectral Flows
Progress in Industrial Mathematics at ECMI 2021
Seite 455--461
Herausgeber: Springer International Publishing Cham
2022
455--461

4857.

Arora, Sahiba; Glück, Jochen
Criteria for eventual domination of operator semigroups and resolvents
To appear in the Proceedings of IWOTA 2021, Lancaster
2022

4856.

Anna Braun, geboren Tscherniewski
Crowd Management at Train Stations in Case of Large-Scale Emergency Events
Bergische Universität Wuppertal
2022

4855.

Alves Batista, Rafael; others
CRPropa 3.2 -- an advanced framework for high-energy particle propagation in extragalactic and galactic spaces
JCAP, 09 :035
2022

4854.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4853.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4852.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4851.

Stiglmayr, Michael; Figueira, Jos\'{e} Rui; Klamroth, Kathrin; Paquete, Lu\'{i}s; Schulze, Britta
Decision Space Robustness for Multiobjective Integer Linear Programming
Annals of Operations Research, 319 :1769--1791
2022

4850.

Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
2022

4849.


Development of a gas chromatography-mass spectrometry (GC-MS) method for the analysis of triterpenic acids
Lebensmittelchemie, 76 :S2-338-S2-338
2022
Herausgeber: Wiley
ISSN: 0937-1478

4848.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Digitalisierung: Mit einem E‐Book in die organische Chemie starten
Nachrichten aus der Chemie, 70 (1) :34-36
2022

4847.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4846.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4845.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4844.

Jäschke, Jens; Ehrhardt, M.; Günther, M.; Jacob, Birgit
Discrete port-Hamiltonian Coupled Heat Transfer
Progress in Industrial Mathematics at ECMI 2021, The European Consortium for Mathematics in Industry, Seite 439-445
In M. Ehrhardt and M. Günther, Editor
Herausgeber: Springer
2022

4843.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
Progress in Industrial Mathematics at ECMI 2021
Seite 439--445
Herausgeber: Springer International Publishing Cham
2022
439--445