Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2022
4892.
Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A Port-Hamiltonian Formulation of Coupled Heat Transfer
Math. Comput. Model. Dyn. Syst., 28 (1) :78-94
20224891.
Jacob, Birgit; Schwenninger, Felix; Wintermayr, Jens
A refinement of Boillon's theorem on maximal regularity
Studia Math., 263 (2) :141-158
20224890.
Heyden, von der, Lisa; Wissdorf, Walter; Kurtenbach, Ralf; Kleffmann, Jörg
A relaxed eddy accumulation (REA) LOPAP system for flux measurements of nitrous acid (HONO)
Atmospheric Measurement Techniques, 15 (6) :1983--2000
März 2022
ISSN: 1867-85484889.
Abreu, Pedro; others
A Search for Photons with Energies Above 2 x 10^{17} eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory
Astrophys. J., 933 (2) :125
20224888.
Glück, Jochen; Roth, Stefan; Spodarev, Evgeny
A solution to a linear integral equation with an application to statistics of infinitely divisible moving averages
Scand. J. Stat. :30 pages
20224887.
Villena, Guillermo; Kleffmann, Jörg
A source for the continuous generation of pure and quantifiable HONO mixtures
Atmospheric Measurement Techniques, 15 (3) :627--637
Februar 2022
ISSN: 1867-85484886.
Voss C., Janoske U.
A surrogate approach to rapidly predict particle collection on single fiber using computational fluid dynamics and machine learning
Machine Learning und Artificial Intelligence in Strömungsmechanik und Strukturanalyse
Herausgeber: NAFEMS
Mai 20224885.
Bolten, M.; Donatelli, M.; Ferrari, P.; Furci, I.
A symbol based analysis for multigrid methods for block-circulant and block-Toeplitz Systems
SIAM J. Matrix Anal. Appl., 43 (1) :405-438
20224884.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
A symbol-based analysis for multigrid methods for block-circulant and block-Toeplitz systems
SIAM J. Matrix Anal. Appl., 43 (1) :405-438
2022
ISSN: 0895-47984883.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
A symbol-based analysis for multigrid methods for block-circulant and block-Toeplitz systems
SIAM J. Matrix Anal. Appl., 43 (1) :405-438
2022
ISSN: 0895-47984882.
Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A two-dimensional port-Hamiltonian model for coupled heat transfer
Mathematics, 10 (24) :4635
2022
Herausgeber: MDPI4881.
Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A two-dimensional port-Hamiltonian model for coupled heat transfer
Mathematics, 10 (24) :4635
2022
Herausgeber: MDPI4880.
Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A two-dimensional port-Hamiltonian model for coupled heat transfer
Mathematics, 10 (24) :4635
2022
Herausgeber: MDPI4879.
Jäschke, Jens; Ehrhardt, M.; Günther, M.; Jacob, Birgit
A Two-Dimensional Port-Hamiltonian Model for Coupled Heat Transfer
Mathematics, 10(24) :4635
20224878.
Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A Two-Dimensional Port-Hamiltonian Model for Coupled Heat Transfer
Mathematics, 10 (24) :4635
2022
Herausgeber: MDPI4877.
Yoda, R.; Bolten, Matthias; Nakajima, K.; Fujii, A.
Acceleration of optimized coarse-grid operators by spatial redistribution for multigrid reduction in time
In Groen, Derek and de Mulatier, Clelia and Paszynski, Maciej and Krzhizhanovskaya, Valeria V. and Dongarra, Jack J. and Sloot, Peter M. A., Editor, Computational Science - ICCS 2022, Seite 214-221
In Groen, Derek and de Mulatier, Clelia and Paszynski, Maciej and Krzhizhanovskaya, Valeria V. and Dongarra, Jack J. and Sloot, Peter M. A., Editor
Herausgeber: Springer International Publishing, Cham
20224876.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Acceleration of optimized coarse-grid operators by spatial redistribution for multigrid reduction in time
In Groen, Derek and de Mulatier, Clelia and Paszynski, Maciej and Krzhizhanovskaya, Valeria V. and Dongarra, Jack J. and Sloot, Peter M. A., Editor, Computational Science - ICCS 2022, Seite 214-221
In Groen, Derek and de Mulatier, Clelia and Paszynski, Maciej and Krzhizhanovskaya, Valeria V. and Dongarra, Jack J. and Sloot, Peter M. A., Editor
Herausgeber: Springer International Publishing, Cham
20224875.
Ehrhardt, Matthias
An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal4874.
Ehrhardt, Matthias
An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal4873.
Ehrhardt, Matthias
An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions
20224872.
Arora, Sahiba; Glück, Jochen
An operator theoretic approach to uniform (anti-)maximum principles
J. Differential Equations, 310 :164--197
20224871.
4870.
Schneider, Lukas; Kaul, Matthias; Braschke, Kamil; Eilts, Peter; Schmidt, Eberhard; Janoske, Uwe
Ash Behaviour in Wall-Flow Filters
In Bargende, Michael and Reuss, Hans-Christian and Wagner, Andreas, Editor, 22. Internationales Stuttgarter Symposium, Seite 629--646
In Bargende, Michael and Reuss, Hans-Christian and Wagner, Andreas, Editor
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2022ISBN: 978-3-658-37009-1
4869.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite (accepted)
20224868.
Yoda, R.; Bolten, Matthias; Nakajima, K.; Fujii, A.
Assignment of idle processors to spatial redistributed domains on coarse levels in multigrid reduction in time
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 41-51
2022