Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2022
4942.
[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Strom aus Bäckerhefe
Nachrichten aus der Chemie, 70 (7-8) :18-21
Juli 20224941.
[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Entwicklung eines lowcost Experiments für den Chemieunterricht am Beispiel der enzymatischen Brennstoffzelle mit Lactase
CHEMKON, 29 (S1) :233-238
Juni 20224940.
[german] Zeller, Diana
Medialab – ein dreistufiges Modul zur Entwicklung digitalisierungsbezogener Kompetenzen im Studium des Chemie‐ und Sachunterrichtslehramts
CHEMKON, 29 (S1) :287-292
Juni 20224939.
Zou, Miancheng; Zhao, Pengkun; Fan, Jilin; Göstl, Robert; Herrmann, Andreas
Microgels as drug carriers for sonopharmacology
Journal of Polymer Science, 60 (12) :1864--1870
Juni 2022
ISSN: 2642-41694938.
[german] Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE im Chemieunterricht – von der Leitlinie BNE NRW zur exemplarischen Unterrichtseinbindung
CHEMKON, 29 (S1) :239-245
Juni 20224937.
[english] Bohrmann-Linde, Claudia; Zeller, Diana; Meuter, Nico; Tausch, Michael W.
Teaching Photochemistry: Experimental Approaches and Digital Media
ChemPhotoChem, 6 (6) :1-11
Juni 20224936.
Baumann, Christoph; Göstl, Robert
Triazole-Extended Anthracenes as Optical Force Probes
Synlett, 33 (9) :875--878
06 2022
ISSN: 0936-5214, 1437-20964935.
[german] Zeller, Diana; Meier, Monique
Videos interaktiv erweitern - Forschendes Lernen vielseitig unterstützen
Digital Unterricht Biologie, 4 :10-11
Mai 20224934.
Izak-Nau, Emilia; Braun, Susanne; Pich, Andrij; Göstl, Robert
Mechanically Resistant Poly(N-vinylcaprolactam) Microgels with Sacrificial Supramolecular Catechin Hydrogen Bonds
Advanced Science, 9 (12) :2104004
April 2022
ISSN: 2198-38444933.
Huo, Shuaidong; Liao, Zhihuan; Zhao, Pengkun; Zhou, Yu; Göstl, Robert; Herrmann, Andreas
Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation
Advanced Science, 9 (12) :2104696
April 2022
ISSN: 2198-38444932.
Schulte, M. Friederike; Izak-Nau, Emilia; Braun, Susanne; Pich, Andrij; Richtering, Walter; Göstl, Robert
Microgels react to force: mechanical properties, syntheses, and force-activated functions
Chemical Society Reviews, 51 (8) :2939--2956
April 2022
ISSN: 1460-47444931.
[german] Gökkus, Yasemin; Tausch, Michael W.
Explorative Studie zur partizipativen und nutzenorientierten Forschung in der Chemiedidaktik
CHEMKON, 29 (3) :117-124
April 20224930.
Küng, Robin; Göstl, Robert; Schmidt, Bernd M.
Release of Molecular Cargo from Polymer Systems by Mechanochemistry
Chemistry – A European Journal, 28 (17) :e202103860
03 2022
ISSN: 1521-37654929.
Stratigaki, Maria; Baumann, Christoph; Göstl, Robert
Confocal Microscopy Visualizes Particle–Crack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles
Macromolecules, 55 (3) :1060--1066
Februar 2022
ISSN: 0024-92974928.
Meng, Zhuojun; Liu, Qing; Zhang, Yi; Sun, Jing; Yang, Chenjing; Li, Hongyan; Loznik, Mark; Göstl, Robert; Chen, Dong; Wang, Fan; Clark, Noel A.; Zhang, Hongjie; Herrmann, Andreas; Liu, Kai
Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Self-Healing, and Magnetic Response Behaviors
Advanced Materials, 34 (3) :2106208
Januar 2022
ISSN: 1521-40954927.
Zou, Miancheng; Zhao, Pengkun; Huo, Shuaidong; Göstl, Robert; Herrmann, Andreas
Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound
ACS Macro Letters, 11 (1) :15-19
Januar 20224926.
Burgmann, Sebastian; Krämer, Veronika; Dues, Michael; Steinbock, Jonas; Büttner, Lars; Czarske, Juergen; Janoske, Uwe
tm - Technisches Messen, 89 (3) :178--188
20224925.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
#debunk YouTube-Videos - Ein didaktisches Konzept zum Einsatz von Videos im Chemieunterricht zur Stärkung der Digital Scientific Literacy
MNU journal, 75 (03) :197-201
20224924.
Acu, Ana-Maria; Dancs, Madalina; Heilmann, Margareta; Raşa, Ioan; Paşca, Vlad
A Bernstein-Schnabl type operator
Applicable Analysis and Discrete Mathematics, 16(2) :495-507
20224923.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A Characteristic Boundary Condition for Multispeed Lattice Boltzmann Methods
Accepted at Commun. Comput. Phys.
20224922.
Arora, Sahiba; Glück, Jochen
A characterization of the individual maximum and anti-maximum principle
20224921.
Fatoorehchi, Hooman; Ehrhardt, Matthias
A combined method for stability analysis of linear time invariant and nonlinear continuous-time control systems based on the Hermite-Fujiwara matrix and Cholesky decomposition
20224920.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224919.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224918.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022