Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



1996

643.

Tausch, Michael W.; Wachtendonk, M.; Porth, H.-R.; Schulze, I.; Wambach, H.
STOFF-FORMEL-UMWELT, CHEMIE S I
Herausgeber: C. C. Buchner, Bamberg
1996

642.

G\"unther, Michael; Rentrop, P.
The {NAND-gate} -- a benchmark for the numerical simulation of digital circuits
In W.~Mathis and P.~Noll, Editor, 2.ITG-Diskussionssitzung ''Neue Anwendungen Theoretischer Konzepte in der Elektrotechnik - mit Gedenksitzung zum 50. Todestag von Wilhelm Cauer'', Seite 27--33
In W.~Mathis and P.~Noll, Editor
Herausgeber: Berlin, VDE-Verlag
1996

641.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\) → X\(^{3}\)\(\Sigma\)\(^{-}\) Transitions of AsH and AsD
Journal of Molecular Spectroscopy, 178 (2) :165-171
1996
Herausgeber: Academic Press

640.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\) → X\(^{3}\)\(\Sigma\)\(^{-}\) Transitions of AsH and AsD
Journal of Molecular Spectroscopy, 178 (2) :165-171
1996
Herausgeber: Academic Press

639.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\) → X\(^{3}\)\(\Sigma\)\(^{-}\) transitions of PH and PD
Chemical Physics Letters, 249 (3-4) :183-190
1996

638.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\) → X\(^{3}\)\(\Sigma\)\(^{-}\) transitions of PH and PD
Chemical Physics Letters, 249 (3-4) :183-190
1996

637.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) → X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) Transitions of SbH and SbD
Journal of Molecular Spectroscopy, 179 (1) :79-84
1996
Herausgeber: Academic Press

636.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) → X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) Transitions of SbH and SbD
Journal of Molecular Spectroscopy, 179 (1) :79-84
1996
Herausgeber: Academic Press

635.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) States of BiCl, BiBr, and BiI
Journal of Molecular Spectroscopy, 175 (1) :48-53
1996
Herausgeber: Academic Press

634.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) States of BiCl, BiBr, and BiI
Journal of Molecular Spectroscopy, 175 (1) :48-53
1996
Herausgeber: Academic Press

633.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a1Δ → X3Σ- Transitions of AsH and AsD
Journal of Molecular Spectroscopy, 178 (2) :165-171
1996
Herausgeber: Academic Press

632.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a1Δ → X3Σ- transitions of PH and PD
Chemical Physics Letters, 249 (3-4) :183-190
1996

631.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a1Δ(a2) → X3Σ-(X21) Transitions of SbH and SbD
Journal of Molecular Spectroscopy, 179 (1) :79-84
1996
Herausgeber: Academic Press

630.

Beutel, M.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.
The a1Δ(a2) States of BiCl, BiBr, and BiI
Journal of Molecular Spectroscopy, 175 (1) :48-53
1996
Herausgeber: Academic Press

629.

Günther, Michael; Rentrop, Peter
The differential-algebraic index concept in electric circuit simulation
, Proceedings of the 3rd International Congress on Industrial and Applied MathematicsBand76, Seite 91–94
Herausgeber: Akademie Verlag Berlin
1996

628.


The differential-algebraic index concept in electric circuit simulation
Zeitschrift fur angewandte Mathematik und Mechanik, 76 (1) :91--94
1996

627.

Denk, Georg; Günther, Michael
The influence of MOSFET model and network equations on circuit simulation
Preprint (1842)
1996
Herausgeber: Technische Hochschule Darmstadt

626.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The potential energy surface of H\(_{2}\)\(^{16}\)O
Journal of Chemical Physics, 105 (15) :6490-6497
1996

625.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The potential energy surface of H\(_{2}\)\(^{16}\)O
Journal of Chemical Physics, 105 (15) :6490-6497
1996

624.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The potential energy surface of H216O
Journal of Chemical Physics, 105 (15) :6490-6497
1996

623.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The Potential Energy Surface of Hydrogen Sulfide
Journal of Molecular Spectroscopy, 178 (2) :184-188
1996
Herausgeber: Academic Press

622.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The Potential Energy Surface of Hydrogen Sulfide
Journal of Molecular Spectroscopy, 178 (2) :184-188
1996
Herausgeber: Academic Press

621.

Polyansky, Oleg L.; Jensen, Per; Tennyson, Jonathan
The Potential Energy Surface of Hydrogen Sulfide
Journal of Molecular Spectroscopy, 178 (2) :184-188
1996
Herausgeber: Academic Press

620.

Kozin, Igor N.; Jensen, Per; Polanz, Oliver; Klee, Stefan; Poteau, Laurent; Demaison, Jean
The Rotational Spectrum of H\(_{2}\)Te
Journal of Molecular Spectroscopy, 180 (2) :402-413
1996
Herausgeber: Academic Press

619.

Kozin, Igor N.; Jensen, Per; Polanz, Oliver; Klee, Stefan; Poteau, Laurent; Demaison, Jean
The Rotational Spectrum of H\(_{2}\)Te
Journal of Molecular Spectroscopy, 180 (2) :402-413
1996
Herausgeber: Academic Press