Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 1988
217.
Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988216.
Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O2(b1Σg+, v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988215.
Heilmann, Margareta
Lp-saturation of some modified Bernstein operators
Journal of Approximation Theory, 54 (3) :260-273
1988
ISSN: 0021-9045214.
Weinmüller, E.; Winkler, E.
Path-following Algorithm for Singular Boundary Value Problems
ZAMM, 68 :527--537
1988213.
Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988212.
Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988211.
Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(3P) atoms in halogenomethane + H flame systems and measurements of C(3P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988210.
Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988209.
Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988208.
Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a1Δ(a2)-X3Σ-(X21) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988207.
Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988206.
Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988205.
Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X~3B1 methylene (CH2) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988- 1987
204.
Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987203.
Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987202.
Spirko, Vladimír; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H3+: Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987201.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987200.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987199.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987198.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987197.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH2+ using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987196.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of ν1 and ν3 for triplet methylene (X~3B1 CH2) and the determination of the vibrationless singlet-triplet splitting Te (a~1A1)
The Journal of Chemical Physics, 87 (4) :2166-2169
1987195.
Heilmann, Margareta
Approximation auf [0, ∞) durch das Verfahren der Operatoren vom Baskakov-Durrmeyer Typ
Universität Dortmund
1987194.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC\(^{+}\)
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987193.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC\(^{+}\)
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987