Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



1994

493.

Auwera, J. Vander; Holland, J. K.; Jensen, Per; Johns, John W. C.
The \(\nu\)\(_{6}\) band system of C\(_{3}\)O\(_{2}\) near 540 cm\(^{-1}\)
Journal of Molecular Spectroscopy, 163 (2) :529-540
1994
Herausgeber: Academic Press

492.

Auwera, J. Vander; Holland, J. K.; Jensen, Per; Johns, John W. C.
The \(\nu\)\(_{6}\) band system of C\(_{3}\)O\(_{2}\) near 540 cm\(^{-1}\)
Journal of Molecular Spectroscopy, 163 (2) :529-540
1994
Herausgeber: Academic Press

491.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(^{+}\) (a\(_{1}\) 1) → X \(^{1}\)\(\Sigma\)\(^{+}\) (X 0\(^{+}\)) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

490.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(^{+}\) (a\(_{1}\) 1) → X \(^{1}\)\(\Sigma\)\(^{+}\) (X 0\(^{+}\)) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

489.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\) (a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) Transition of Bi\(_{2}\)
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

488.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\) (a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) Transition of Bi\(_{2}\)
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

487.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\)(a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) transition of Sb\(_{2}\)
Chemical Physics Letters, 218 (1-2) :13-16
1994

486.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\)(a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) transition of Sb\(_{2}\)
Chemical Physics Letters, 218 (1-2) :13-16
1994

485.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a 3Σu+ (a1 1u) → X 1Σg+ (X 0g+) Transition of Bi2
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

484.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a 3Σu+(a1 1u) → X 1Σg+ (X 0g+) transition of Sb2
Chemical Physics Letters, 218 (1-2) :13-16
1994

483.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a 3Σ+ (a1 1) → X 1Σ+ (X 0+) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

482.

Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

481.

Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

480.

Shestakov, Oleg; Fink, Ewald H.
The a1Δ(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

479.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO\(_{2}\) derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

478.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO\(_{2}\) derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

477.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO2 derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

476.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

475.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

474.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

473.

Bednarek, G.; Wayne, R.P.; Wildt, J{ü}rgen; Fink, E.H.
The yield of O\(_{2}\)(b \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v=0) produced by quenching of O\(_{2}\)(A \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), v=8) by O\(_{2}\)
Chemical Physics, 185 (2) :251-261
1994

472.

Bednarek, G.; Wayne, R.P.; Wildt, J{ü}rgen; Fink, E.H.
The yield of O\(_{2}\)(b \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v=0) produced by quenching of O\(_{2}\)(A \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), v=8) by O\(_{2}\)
Chemical Physics, 185 (2) :251-261
1994

471.

Bednarek, G.; Wayne, R.P.; Wildt, Jürgen; Fink, E.H.
The yield of O2(b 1Σg+, v=0) produced by quenching of O2(A 3Σu+, v=8) by O2
Chemical Physics, 185 (2) :251-261
1994

470.

Auwera, J. Vander; Holland, J. K.; Jensen, Per; Johns, John W. C.
The ν6 band system of C3O2 near 540 cm-1
Journal of Molecular Spectroscopy, 163 (2) :529-540
1994
Herausgeber: Academic Press
1993

469.

Graf, J.; Jensen, Per
A Theoretical Model for the Rotation and Vibration of Symmetrical Triatomic Molecules with Strong Coupling Between the Local Stretching Modes
Journal of Molecular Spectroscopy, 159 (1) :175-191
1993
Herausgeber: Academic Press