Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2001

1018.

Bartel, Andreas
Multirate {ROW} methods of mixed type for circuit simulation
Scientific Computing in Electrical Engineering: Proceedings of the 3rd International Workshop, August 20--23, 2000, Warnemünde, Germany, Seite 241--249
Springer Berlin Heidelberg
2001

1017.

Bartel, A.
Multirate {ROW}-Methods of Mixed Type for Circuit Simulation
In U. {van Rienen} and M. Günther and D. Hecht, Editor, Scientic Computing in Electrical Engineering, Lecture Notes in Computational Science and Engineering, Seite 241--249
In U. {van Rienen} and M. Günther and D. Hecht, Editor
Herausgeber: Springer
2001

1016.

G\"unther, Michael; Kv{\ae}rno, A.; Rentrop, P.
Multirate Partitioned {Runge-Kutta} Methods
BIT, 41 (3) :504--515
2001

1015.

Günther, Michael; Kværno, Anne; Rentrop, Peter
Multirate Partitioned Runge-Kutta Methods
BIT Numerical Mathematics, 41 (3) :504–514
2001
Herausgeber: Springer Netherlands

1014.

Günther, Michael; Kvaern{\o}, Anne; Rentrop, Peter
Multirate partitioned runge-kutta methods
BIT Numerical Mathematics, 41 :504--514
2001
Herausgeber: Kluwer Academic Publishers

1013.

Schandl, Bernd; Klamroth, Kathrin; Wiecek, Margaret M.
Norm-Based Approximation in Bicriteria Programming
Computational Optimization and Applications, 20 (1) :23-42
2001

1012.

Schandl, Bernd; Klamroth, Kathrin; Wiecek, Margaret M.
Norm-based approximation in convex multicriteria programming
In Fleischmann, B. and Lasch, R. and Derigs, U. and Domschke, W. and Rieder, U., Editor, Operations Research Proceedings 2000, Seite 8-13
In Fleischmann, B. and Lasch, R. and Derigs, U. and Domschke, W. and Rieder, U., Editor
Herausgeber: Springer-Verlag
2001

1011.

Houben, S. H. M. J.; Maten, E. J. W.; Maubach, J. M.; Peters, J. M. F.
Novel time-domain methods for free-running oscillators
ECCTD'01 - Proceedings of the 15TH European Conference on Circuit Theory and Design, Seite III-393 - III-396
Helsinki University of Technology
2001

1010.

Denk, Georg; Günther, Michael; Simeon, Bernd
Numerische Simulation in Chip-Design und Fahrzeugtechnik
2001

1009.

Jacob, Birgit; Partington, Jonathan R.
On the boundedness and continuity of the spectral factorization mapping
SIAM J. Control Optim., 40 (1) :88--106
2001

1008.

Günther, Michael
Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen
VDI-Verlag
2001

1007.

Günther, Michael; Hoschek, Markus
Partitionierung Strategies in Circuit Simulation
2001

1006.

Günther, Michael; Rentrop, Peter
PDAE-Netzwerkmodelle in der elektrischen Schaltungssimulation
:31-38
2001
Herausgeber: Frankfurt

1005.

Klamroth, Kathrin
Planar location problems with line barriers
Optimization, 49 :517-527
2001

1004.

Arnold, Martin; Günther, Michael
Preconditioned dynamic iteration for coupled differential-algebraic systems
BIT Numerical Mathematics, 1 (41) :1–25
2001
Herausgeber: Springer Netherlands

1003.

Arnold, Martin; Günther, Michael
Preconditioned dynamic iteration for coupled differential-algebraic systems
BIT Numerical Mathematics, 41 (41) :1--25
2001
Herausgeber: Kluwer Academic Publishers

1002.

Bunker, Philip R.; Chan, M. C.; Kraemer, Wolfgang P.; Jensen, Per
Predicted rovibronic spectra of CH\(_{2}\)\(^{+}\) and CD\(_{2}\)\(^{+}\)
Chemical Physics Letters, 341 (3-4) :358-362
2001

1001.

Bunker, Philip R.; Chan, M. C.; Kraemer, Wolfgang P.; Jensen, Per
Predicted rovibronic spectra of CH\(_{2}\)\(^{+}\) and CD\(_{2}\)\(^{+}\)
Chemical Physics Letters, 341 (3-4) :358-362
2001

1000.

Bunker, Philip R.; Chan, M. C.; Kraemer, Wolfgang P.; Jensen, Per
Predicted rovibronic spectra of CH2+ and CD2+
Chemical Physics Letters, 341 (3-4) :358-362
2001

999.

Jensen, Per; Buenker, Robert J.; Gu, Jian-ping; Osmann, Gerald; Bunker, Philip R.
Refined potential-energy surfaces for the X\verb=~=\(^{2}\)A'' and A\verb=~=\(^{2}\)A' electronic states of the HO\(_{2}\) molecule
Canadian Journal of Physics, 79 (2-3) :641-652
2001
Herausgeber: NRC Research Press Ottawa, Canada

998.

Jensen, Per; Buenker, Robert J.; Gu, Jian-ping; Osmann, Gerald; Bunker, Philip R.
Refined potential-energy surfaces for the X\verb=~=\(^{2}\)A'' and A\verb=~=\(^{2}\)A' electronic states of the HO\(_{2}\) molecule
Canadian Journal of Physics, 79 (2-3) :641-652
2001
Herausgeber: NRC Research Press Ottawa, Canada

997.

Jensen, Per; Buenker, Robert J.; Gu, Jian-ping; Osmann, Gerald; Bunker, Philip R.
Refined potential-energy surfaces for the X~2A" and A~2A' electronic states of the HO2 molecule
Canadian Journal of Physics, 79 (2-3) :641-652
2001
Herausgeber: NRC Research Press Ottawa, Canada

996.

Lampe, S.; Brachtendorf, H. G.; Maten, E. J. W.; Onneweer, S. P.; Laur, R.
Robust Limit Cycle Calculations of Oscillators
Lecture Notes in Computational Science and Engineering
Seite 233--240
Herausgeber: Springer Berlin Heidelberg
2001
233--240

995.

Günther, M.; Hoschek, M.; Weiner, R.
ROW methods adapted to a cheap Jacobian
Applied Numerical Mathematics, 37 (1) :231–240
2001
Herausgeber: Elsevier

994.

Günther, Michael; Hoschek, Markus; Weiner, R
ROW methods adapted to a cheap Jacobian
Applied numerical mathematics, 37 (1-2) :231--240
2001
Herausgeber: North-Holland