Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 1986
142.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986141.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X~3B1 methylene (CH2) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986140.
Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.139.
Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.138.
Vojtík, Jan; Spirko, Vladimír; Jensen, Per
Vibrational energies of H3+ and Li3+ based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.- 1985
137.
Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985136.
Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985135.
Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
A~2A' → X~2A" emission spectrum of the HS2 radical
Chemical Physics Letters, 113 (1) :1-7
1985134.
Tausch, Michael W.
Aktivierungsenergie - was ist das?
Praxis der Naturwissenschaften (Chemie), 34 :33
1985133.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985132.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985131.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH2 in the a~3B1 state
Chemical Physics Letters, 118 (1) :60-63
1985130.
Kling, H.-W.; Hartkamp, H.; Buchholz, N.
Matrixunabhängige kontinuierliche Dampfraum-Gas-Chromatographie
Fresenius' Journal of Analytical Chemistry, 320 (4) :341--346
1985129.
Winkler, R.
Path-following for two-point boundary value problems
, Seminarbericht 78 der Sektion MathematikBand78
Humboldt-Universität zu Berlin
1985128.
Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985127.
Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985126.
Spirko, Vladimír; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H3+
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985125.
Lamour, R.; Hanke, M.; Winkler, R.
The program system ‘RWA’ (version 2) for the solution of TPBVP - fundamentals and algorithms
, Seminarbericht 67 der Sektion MathematikBand67
Humboldt-Universität zu Berlin
1985- 1984
124.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada123.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada122.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the ν2 and ν5 absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada121.
Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984120.
Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984119.
Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984118.
Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984