Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



1993

418.

Tausch, Michael W.
Unterrichtsmodell Ozon
FWU Magazin (3-4) :20
1993

417.

Maten, E. J. W.; Huijben, A. J. M.
Vector extrapolation applied to a time cyclic heat problem
In Lewis, R. W., Editor, Numerical methods in thermal problemsBand8(2), Seite 983-994
In Lewis, R. W., Editor
Herausgeber: Pineridge Press Lmt, Swansea, UK
1993

416.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH\(_{2}\) and NH\(_{2}\)\(^{+}\)
The Journal of Chemical Physics, 99 (12) :9709-9719
1993

415.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH\(_{2}\) and NH\(_{2}\)\(^{+}\)
The Journal of Chemical Physics, 99 (12) :9709-9719
1993

414.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH2 and NH2+
The Journal of Chemical Physics, 99 (12) :9709-9719
1993
1992

413.

Maten, E. J. W.; Melissen, J. B. M.
Simulation of inductive heating
{IEEE} Transactions on Magnetics, 28 (2) :1287--1290
März 1992
Herausgeber: Institute of Electrical and Electronics Engineers ({IEEE})

412.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

411.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

410.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC+ molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

409.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

408.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

407.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

406.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

405.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

404.

Jensen, Per; Rohlfing, Celeste Michael; Almlöf, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C3(X~ 1Σg+)
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

403.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

402.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

401.

Wildt, Jürgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O2(a 1Δg → X 3Σg-) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

400.

Heilmann, Margareta
Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren
Universität Dortmund
1992

399.

Tausch, Michael W.
Erzeugung und Desaktivierung von angeregten Zuständen
Mitteilungsblatt der FG Chemieunterricht der GDCh (17) :253
1992

398.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N\(_{2}\)O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

397.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N\(_{2}\)O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

396.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N2O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

395.

Becker, Karl Heinz; K{ö}nig, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C\(_{2}\)O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992

394.

Becker, Karl Heinz; K{ö}nig, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C\(_{2}\)O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992