Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



1983

92.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, Jürgen
b1Σ+ Emissions from group V-VII diatomic molecules: b0+ → X10+ emission of Pl
Chemical Physics Letters, 102 (5) :404-408
1983

91.

Tausch, Michael W.
Chemische Solarenergiespeicherung in Valenzisomeren
Praxis der Naturwissenschaften (Chemie), 32 :79
1983

90.

Tausch, Michael W.
DER UV-TAUCHLAMPENREAKTOR FÜR PHOTOCHEMISCHE SCHULVERSUCHE, Monographie mit Versuchsanleitungen und didaktischen Hinweisen
Herausgeber: SCS Jürgens\&Co KG, Bremen
1983

89.

Jensen, Per
HCNO as a semirigid bender: The degenerate \(\nu\)\(_{4}\) state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

88.

Jensen, Per
HCNO as a semirigid bender: The degenerate \(\nu\)\(_{4}\) state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

87.

Jensen, Per
HCNO as a semirigid bender: The degenerate ν4 state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

86.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO\(_{2}\)(A\(^{2}\)A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

85.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO\(_{2}\)(A\(^{2}\)A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

84.

Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO2(A2A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

83.

Wildt, J{ü}rgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b\(^{1}\)\(\Sigma\)\(^{+}\),\(\nu\)'=0)
Chemical Physics, 80 (1-2) :167-175
1983

82.

Wildt, J{ü}rgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b\(^{1}\)\(\Sigma\)\(^{+}\),\(\nu\)'=0)
Chemical Physics, 80 (1-2) :167-175
1983

81.

Wildt, Jürgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b1Σ+,ν'=0)
Chemical Physics, 80 (1-2) :167-175
1983

80.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b\(^{1}\)\(\Sigma\) states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

79.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b\(^{1}\)\(\Sigma\) states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

78.

Wildt, Jürgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b1Σ states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

77.

[german] Tausch, Michael W.
Strukturaufklärung in der organischen Chemie - Ermittlung der Strukturformeln von Maleinsäure und Fumarsäure
Praxis der Naturwissenschaften (Chemie), 32 :44
1983

76.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The \(\nu\)\(_{3}\) vibration of electronically excited HO\(_{2}\)(A\(^{2}\)A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

75.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The \(\nu\)\(_{3}\) vibration of electronically excited HO\(_{2}\)(A\(^{2}\)A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

74.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

73.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

72.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

71.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the \(\nu\)\(_{4}\) fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

70.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the \(\nu\)\(_{4}\) fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

69.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the ν4 fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

68.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983