Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 1989
267.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
Near-infrared emission bands of TeH and TeD
Journal of Molecular Spectroscopy, 138 (1) :19-28
1989266.
Heilmann, Margareta
On simultaneous approximation by optimal algebraic polynomials
Results in Mathematics, 16 (1-2) :77-81
1989265.
Heilmann, Margareta; Müller, Manfred
On simultaneous approximation by the method of Baskakov-Durrmeyer operators
Numerical Functional Analysis and Optimization, 10 (1-2) :127-138
1989264.
[german] Tausch, Michael W.; Wöhrle, D.
Photokatalyse
Praxis der Naturwissenschaften (Chemie), 38 :37
1989263.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X\(^{2}\)\(\Pi\)) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989262.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X\(^{2}\)\(\Pi\)) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989261.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X2Π) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989260.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989259.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989258.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0+ → X10+ system of 130Te80Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989257.
Tausch, Michael W.; Wachtendonk, M.
STOFF-FORMEL-UMWELT, BAND 1: CHEMISCHE GLEICHGEWICHTE - ELEKTROCHEMIE, Lehrbuch für die S II (Grund- und Leistungskurse), 172 Seiten
Herausgeber: C. C. Buchner, Bamberg
1989256.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989255.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989254.
Wildt, Jürgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O2(a1Δg)
Chemical Physics, 139 (2-3) :401-407
1989253.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.252.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.251.
Jensen, Per
The potential energy surface for the C3 molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.250.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989249.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989248.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989247.
Schönfeld, J; Loennecken, I; Gückel, C
Unilateral pulsating tinnitus: paraganglioma of the glomus jugulare with predominantly vascular extension
Medizinische Klinik (Munich, Germany: 1983), 84 (9) :445--449
1989246.
Heilmann, Margareta; Müller, Manfred
Weighted simultaneous L_p-approximation by the method of Baskakov-Durrmeyer operators
Approximation Theory VI, Proc. 6th Int. Symp., College Station/TX USA1989Band 1, Seite 331-332
1989- 1988
245.
Jensen, Per; Kraemer, Wolfgang P.
A comparison of perturbative and variational rotation-vibration energies calculated for HOC\(^{+}\) and C\(_{3}\) using the nonrigid bender and MORBID Hamiltonians
Journal of Molecular Spectroscopy, 129 (1) :172-185
1988244.
Jensen, Per; Kraemer, Wolfgang P.
A comparison of perturbative and variational rotation-vibration energies calculated for HOC\(^{+}\) and C\(_{3}\) using the nonrigid bender and MORBID Hamiltonians
Journal of Molecular Spectroscopy, 129 (1) :172-185
1988243.
Jensen, Per; Kraemer, Wolfgang P.
A comparison of perturbative and variational rotation-vibration energies calculated for HOC+ and C3 using the nonrigid bender and MORBID Hamiltonians
Journal of Molecular Spectroscopy, 129 (1) :172-185
1988