Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 1986
180.
Maten, E. Jan W.; Sleijpen, Gerard L. G.
A convergence analysis of Hopscotch methods for fourth order parabolic equations
Numerische Mathematik, 49 (2-3) :275--290
März 1986
Herausgeber: Springer Science and Business Media {LLC}179.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986178.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986177.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986176.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986175.
Jensen, Per; Spirko, Vladimír
A new Morse-oscillator based Hamiltonian for H3+: Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986174.
Jensen, Per; Spirko, Vladimír; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H3+: Extension to H2D+ and D2H+
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986173.
Adams, Warren P; Sherali, Hanif D
A tight linearization and an algorithm for zero-one quadratic programming problems
Management Science, 32 (10) :1274--1290
1986
Herausgeber: INFORMS172.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986171.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986170.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC+ calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986169.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986168.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986167.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986166.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada165.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada164.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada163.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.162.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.161.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H2NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.160.
Bielefeld, M.; Wildt, J{ü}rgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0\(^{+}\)) + O\(_{2}\)(X\(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) ↔ SeS(X\(_{1}\)0\(^{+}\)) + O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics Letters, 126 (5) :421-426
1986159.
Bielefeld, M.; Wildt, J{ü}rgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0\(^{+}\)) + O\(_{2}\)(X\(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) ↔ SeS(X\(_{1}\)0\(^{+}\)) + O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics Letters, 126 (5) :421-426
1986158.
Bielefeld, M.; Wildt, Jürgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0+) + O2(X3Σg-) ↔ SeS(X10+) + O2(a1Δg)
Chemical Physics Letters, 126 (5) :421-426
1986157.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Rotation-vibration energy levels of H\(_{2}\)O and C\(_{3}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :50-63
1986156.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Rotation-vibration energy levels of H\(_{2}\)O and C\(_{3}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :50-63
1986