- 2022
- M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher strong order methods for linear Itô SDEs on matrix Lie groups", BIT Numerical Mathematics, pp. 1--25, 2022. Springer Netherlands Dordrecht.
- M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups", BIT Numerical Mathematics, pp. 1--25, 2022. Springer Netherlands Dordrecht.
- M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups", BIT Numer. Math., Jan. 2022. Springer.
- L. Teng, "Gradient boosting-based numerical methods for high dimensional backward stochastic differential equations", Appl. Math. Comput., vol. 426, pp. 127119, 2022.
- F. Klass, A. Gabbana and A. Bartel, "A Characteristic Boundary Condition for Multispeed Lattice Boltzmann Methods", Accepted at Commun. Comput. Phys., 2022.
- H. Fatoorehchi and M. Ehrhardt, "A combined method for stability analysis of linear time invariant and nonlinear continuous-time control systems based on the Hermite-Fujiwara matrix and Cholesky decomposition", 2022.
- T. Kossaczká, M. Ehrhardt and M. Günther, "A deep smoothness WENO method with applications in option pricing" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 417--423.
- F. Klass, A. Gabbana and A. Bartel, "A non-reflecting boundary condition for multispeed lattice Boltzmann methods" in Accepted at Progress in Industrial Mathematics at ECMI 2021, M. Ehrhardt and M. Günther, Eds. Springer-Verlag, Berlin, 2022.
ISBN: 978-3-031-11817-3
- J. Kienitz, G. Lee, N. Nowaczyk and N. Geng, "Dynamically Controlled Kernel Estimation", RISK, vol. 1, 2022.
- M. H. Maamar, M. Ehrhardt and L. Tabharit, "A Nonstandard Finite Difference Scheme for a Time-Fractional Model of Zika Virus Transmission", 2022.
- S. Treibert, H. Brunner and M. Ehrhardt, "A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics", Math. Biosci. Eng, vol. 19, no. 2, pp. 1213--1238, 2022.
- S. Berkhahn and M. Ehrhardt, "A physics-informed neural network to model COVID-19 infection and hospitalization scenarios", Advances in Continuous and Discrete Models, vol. 2022, no. 1, pp. 61, 2022. Springer International Publishing Cham.
- M. Clemens, M. Henkel, F. Kasolis, M. Günther, H. De Gersem and S. Schöps, "Electromagnetic Quasistatic Field Formulations of Darwin Type", arXiv preprint arXiv:2204.06286, 2022.
- J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A Two-Dimensional Port-Hamiltonian Model for Coupled Heat Transfer", Mathematics, vol. 10, no. 24, pp. 4635, 2022. MDPI.
- Z. Zheng, G. Pang, M. Ehrhardt and B. Liu, "An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions", 2022.
- T. Sch\"afers and L. Teng, "Asymmetry in stochastic volatility models with threshold and time-dependent correlation", Studies in Nonlinear Dynamics \& Econometrics, 2022.
- M. Muniz, M. Ehrhardt and M. Günther, "Correlation Matrices Driven by Stochastic Isospectral Flows" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 455--461.
- J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "Discrete port-Hamiltonian coupled heat transfer" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 439--445.
- J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A port-Hamiltonian formulation of coupled heat transfer", Mathematical and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 78--94, 2022. Taylor & Francis.
- N. Nowaczyk, J. Kienitz, S. K. Acar and Q. Liang, "How deep is your model? Network topology selection from a model validation perspective", JMI, vol. 12 (1), 2022.
- K. Sabirov, J. Yusupov, M. Ehrhardt and D. Matrasulov, "Transparent boundary conditions for the sine-Gordon equation: Modeling the reflectionless propagation of kink solitons on a line", Physics Letters A, vol. 423, pp. 127822, 2022. North-Holland.
- P. S. Petrov, M. Ehrhardt and M. Trofimov, "On decomposition of the fundamental solution of the Helmholtz equation over solutions of iterative parabolic equations", Asymptotic Analysis, vol. 126, no. 3-4, pp. 215--228, 2022. IOS Press.
- J. Ackermann, T. Kruse and L. Overbeck, "Inhomogeneous affine Volterra processes", Stochastic Processes and their Applications, vol. 150, pp. 250--279, 2022. North-Holland.
- L. Agasthya, A. Bartel, L. Biferale, M. Ehrhardt and F. Toschi, "Lagrangian instabilities in thermal convection with", 2022.
- L. Agasthya, A. Bartel, L. Biferale, M. Ehrhardt and F. Toschi, "Lagrangian instabilities in thermal convection with stable temperature profiles", arXiv preprint arXiv:2205.03856, Apr. 2022.