Publikationen Prof. Dr. Michael Günther
- 2025
- J. Lorenz, T. Zwerschke, M. Günther and K. Schäfers, "Operator splitting for coupled linear port-Hamiltonian systems", Applied Mathematics Letters, vol. 160, pp. 109309, 2025. Elsevier.
- K. Schäfers, J. Finkenrath, M. Günther and F. Knechtli, "Hessian-free force-gradient integrators", Computer Physics Communications, vol. 309, pp. 109478, 2025.
- 2024
- K. Schäfers, M. Peardon and M. Günther, "A modified Cayley transform for SU (3)", Preprint, 2024.
- M. Clemens, M. Henkel, F. Kasolis and M. Günther, "A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type", Preprint, 2024.
- M. Günther, B. Jacob and C. Totzeck, "Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain", Mathematics of Control, Signals, and Systems, vol. 36, no. 4, pp. 957–977, 2024. Springer London.
- P. Zaspel and M. Günther, "Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes", Preprint, 2024.
- A. Bartel, M. Clemens, M. Günther, B. Jacob and T. Reis, "Port-Hamiltonian systems’ modelling in electrical engineering" in Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022, van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Eds. Springer Cham, 2024, pp. 133–143.
- A. Bartel, M. Diab, A. Frommer, M. Günther and N. Marheineke, "Splitting Techniques for DAEs with port-Hamiltonian Applications", Preprint, 2024.
- M. Clemens, M. Henkel, F. Kasolis and M. Günther, "Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework", TechRxiv, 2024. IEEE.
- M. Günther, B. Jacob and C. Totzeck, "Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach" in Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022, van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Eds. Springer Cham, 2024, pp. 167–174.
- 2023
- M. Clemens and M. Günther, "Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework" in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2023, pp. 1–1.
- K. Schäfers, M. Günther and A. Sandu, "Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems", Preprint, 2023.
- M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds", Applied Numerical Mathematics, vol. 193, pp. 196–203, 2023. North-Holland.
- A. Bartel, M. Diab, A. Frommer and M. Günther, "Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs", Preprint, 2023.
- K. Schäfers, A. Bartel, M. Günther and C. Hachtel, "Spline-oriented inter/extrapolation-based multirate schemes of higher order", Applied Mathematics Letters, vol. 136, pp. 108464, 2023. Pergamon.
- A. Frommer, M. Günther, B. Liljegren-Sailer and N. Marheineke, "Operator splitting for port-Hamiltonian systems", Preprint, 2023.
- A. Bartel, M. Günther, B. Jacob and T. Reis, "Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems", Numerische Mathematik, vol. 155, no. 1-2, pp. 1–34, 2023. Springer New York.
- T. Kossaczká, M. Ehrhardt and M. Günther, "Deep FDM: Enhanced finite difference methods by deep learning", Franklin Open, vol. 4, pp. 100039, 2023. Elsevier.
- 2022
- M. Henkel, F. Kasolis, M. Clemens, M. Günther and S. Schöps, "Implicit gauging of electromagneto-quasistatic field formulations", IEEE Transactions on Magnetics, vol. 58, no. 9, pp. 1–4, 2022. IEEE.
- A. Clevenhaus, M. Ehrhardt and M. Günther, "The parareal algorithm and the sparse grid combination technique in the application of the Heston model" in Progress in Industrial Mathematics at ECMI 2021, Springer Cham, 2022, pp. 477–483.
- M. W. Bannenberg, A. Ciccazzo and M. Günther, "Reduced order multirate schemes in industrial circuit simulation", Journal of Mathematics in Industry, vol. 12, no. 1, pp. 12, 2022. Springer Verlag.
- J. Kienitz, T. A. McWalter, R. Rudd and E. Platen, "Quantization methods for stochastic differential equations" in Novel Mathematics Inspired by Industrial Challenges, Günther, Michael and Schilders, Wil, Eds. Springer Cham, 2022, pp. 299–329.
- Progress in Industrial Mathematics at ECMI 2021. Springer Cham, 2022.
ISBN: 978-3-031-11817-3
- A. Bartel and M. Günther, "Multirate schemes—an answer of numerical analysis to a demand from applications" in Novel Mathematics Inspired by Industrial Challenges, Günther, Michael and Schilders, Wil, Eds. Springer Cham, 2022, pp. 5–27.
- M. Günther and A. Sandu, "Multirate linearly-implicit GARK schemes", BIT Numerical Mathematics, pp. 869–901, 2022. Springer Netherlands.