Publikationen Prof. Dr. Michael Günther
- 2025
- K. Schäfers, J. Finkenrath, M. Günther and F. Knechtli, "Hessian-free force-gradient integrators", Computer Physics Communications, vol. 309, pp. 109478, 2025.
- K. Schäfers, J. Finkenrath, M. Günther and F. Knechtli, "Hessian-free force-gradient integrators and their application to lattice QCD simulations", PoS, vol. LATTICE2024, pp. 025, 2025.
- J. Lorenz, T. Zwerschke, M. Günther and K. Schäfers, "Operator splitting for coupled linear port-Hamiltonian systems", Applied Mathematics Letters, vol. 160, pp. 109309, 2025. Elsevier.
- 2024
- K. Schäfers, M. Peardon and M. Günther, "A modified Cayley transform for SU (3)", Preprint, 2024.
- M. Clemens, M. Henkel, F. Kasolis and M. Günther, "A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type", Preprint, 2024.
- M. Günther, B. Jacob and C. Totzeck, "Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain", Mathematics of Control, Signals, and Systems, vol. 36, no. 4, pp. 957–977, 2024. Springer London.
- P. Zaspel and M. Günther, "Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes", Preprint, 2024.
- A. Bartel, M. Clemens, M. Günther, B. Jacob and T. Reis, "Port-Hamiltonian systems’ modelling in electrical engineering" in Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022, van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Eds. Springer Cham, 2024, pp. 133–143.
- A. Bartel, M. Diab, A. Frommer, M. Günther and N. Marheineke, "Splitting Techniques for DAEs with port-Hamiltonian Applications", Preprint, 2024.
- M. Clemens, M. Henkel, F. Kasolis and M. Günther, "Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework", TechRxiv, 2024. IEEE.
- M. Günther, B. Jacob and C. Totzeck, "Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach" in Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022, van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Eds. Springer Cham, 2024, pp. 167–174.
- 2023
- T. Kossaczká, M. Ehrhardt and M. Günther, "Deep FDM: Enhanced finite difference methods by deep learning", Franklin Open, vol. 4, pp. 100039, 2023. Elsevier.
- A. Bartel, M. Günther, B. Jacob and T. Reis, "Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems", Numerische Mathematik, vol. 155, no. 1-2, pp. 1–34, 2023. Springer New York.
- A. Frommer, M. Günther, B. Liljegren-Sailer and N. Marheineke, "Operator splitting for port-Hamiltonian systems", Preprint, 2023.
- A. Bartel, M. Diab, A. Frommer and M. Günther, "Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs", Preprint, 2023.
- K. Schäfers, A. Bartel, M. Günther and C. Hachtel, "Spline-oriented inter/extrapolation-based multirate schemes of higher order", Applied Mathematics Letters, vol. 136, pp. 108464, 2023. Pergamon.
- M. Clemens and M. Günther, "Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework" in 2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2023, pp. 1–1.
- M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds", Applied Numerical Mathematics, vol. 193, pp. 196–203, 2023. North-Holland.
- K. Schäfers, M. Günther and A. Sandu, "Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems", Preprint, 2023.
- 2022
- T. Kossaczká, M. Ehrhardt and M. Günther, "A deep smoothness WENO method with applications in option pricing" in Progress in Industrial Mathematics at ECMI 2021, Ehrhardt, Matthias and Günther, Michael, Eds. Springer Cham, 2022, pp. 417–423.
- M. Ehrhardt and M. Günther, "A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations", Physics of Fluids, vol. 34, no. 2, pp. 026604, 2022. AIP Publishing.
- F. Klass, A. Gabbana and A. Bartel, "A non-reflecting boundary condition for multispeed lattice Boltzmann methods" in Progress in Industrial Mathematics at ECMI 2021, Ehrhardt, Matthias and Günther, Michael, Eds. Springer Cham, 2022, pp. 447–453.
- J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A port-Hamiltonian formulation of coupled heat transfer", Mathematical and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 78–94, 2022. Taylor & Francis.
- J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A two-dimensional port-Hamiltonian model for coupled heat transfer", Mathematics, vol. 10, no. 24, pp. 4635, 2022. MDPI.
- M. Muniz, M. Ehrhardt and M. Günther, "Correlation matrices driven by stochastic isospectral flows" in Progress in Industrial Mathematics at ECMI 2021, Springer Cham, 2022, pp. 455–461.