Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2018
3867.
Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E Jan W; Pulch, Roland; Tasi{\'c}, Bratislav; Günther, Michael
Nanoelectronic COupled Problems Solutions: uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 :1--19
2018
Herausgeber: Springer Berlin Heidelberg3866.
Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic COupled problems solutions: Uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 (1) :1–19
2018
Herausgeber: Springer Verlag3865.
Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic COupled problems solutions: Uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 (1) :1–19
2018
Herausgeber: Springer Verlag3864.
Putek, P.; Janssen, R.; Niehof, J.; Maten, E. J. W.; Pulch, R.; Tasic, B.; Günther, M.
Nanoelectronic Coupled Problems Solutions: Uncertainty quantification of {RFIC} interference
In Quintela, P. and Barral, P. and Gómez, D. and Pena, F.J. and Rodríguez, J. and Salgado, P. and Vázquez-Mendéz, M.E., Editor, Progress in Industrial Mathematics at ECMI 2016 Band 26 aus Mathematics in Industry
Seite 271--279
Herausgeber: Springer
2018
271--2793863.
Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic coupled problems solutions: Uncertainty quantification of RFIC interference
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor, Progress in Industrial Mathematics at ECMI 2016ausMathematics in Industry, Seite 271–279
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor
Herausgeber: Springer Cham
20183862.
Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic coupled problems solutions: Uncertainty quantification of RFIC interference
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor, Progress in Industrial Mathematics at ECMI 2016ausMathematics in Industry, Seite 271–279
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor
Herausgeber: Springer Cham
20183861.
Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
20183860.
Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
20183859.
Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
20183858.
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
Numerical evidence of electron hydrodynamic whirlpools in graphene samples
Computers & Fluids, 172 :644–650
2018
Herausgeber: Elsevier3857.
Petrov, P.; Tyshchenko, A. G.; Ehrhardt, M.
Numerical solution of iterative parabolic equations approximating the nonlinear {Helmholtz} equation
Proceedings of the International Conference DAYS on DIFFRACTION 2018, St.Petersburg, Russia
20183856.
Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241–244
IEEE
Herausgeber: IEEE
20183855.
Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241--244
IEEE
20183854.
Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241–244
IEEE
Herausgeber: IEEE
20183853.
Ramadan, Leila
Offline-Pyrolyse GCxGC von Kunstoffpolymeren zur Analytik von Mikroplastik
20183852.
Ankirchner, Stefan; Klein, Maike; Kruse, Thomas; Urusov, Mikhail
On a certain local martingale in a general diffusion setting
20183851.
Bartel, Andreas; G\"unther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56--91
2018
Herausgeber: Society for Industrial and Applied Mathematics3850.
Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56--91
Januar 2018
Herausgeber: Society for Industrial and Applied Mathematics3849.
Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56–91
2018
Herausgeber: Society for Industrial and Applied Mathematics3848.
Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56–91
2018
Herausgeber: Society for Industrial and Applied Mathematics3847.
B{\'a}tkai, Andr{\'a}s; Jacob, Birgit; Voigt, Jürgen; Wintermayr, Jens
Perturbations of positive semigroups on {AM}-spaces
Semigroup Forum, 96 (2) :333--347
20183846.
Bátkai, András; Jacob, Birgit; Voigt, Jürgen; Wintermayr, Jens
Perturbations of positive semigroups on AM-spaces
Semigroup Forum, 96 (2) :333--347
20183845.
[english] Bohrmann-Linde, Claudia; Zeller, Diana
Photosensitizers for Photogalvanic Cells in the Chemistry Classroom
World Journal of Chemical Education, 6 (1) :36--42
2018
Herausgeber: Science and Education Publishing Co., Ltd.3844.
[english] Tausch, Michael W.
Phototactive Thin Films in Science Education
World Journal of Chemical Education, 6 (1) :14--17
2018
Herausgeber: Science and Education Publishing Co., Ltd.3843.
Bargetz, Christian; Wegner, Sven-Ake
Pivot duality of universal interpolation and extrapolation spaces
J. Math. Anal. Appl., 460 (1) :321--331
2018