Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2019
4015.
Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221–225
IEEE
Herausgeber: IEEE
20194014.
Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221--225
IEEE
20194013.
Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221–225
IEEE
Herausgeber: IEEE
20194012.
Cuny, Christophe; Eisner, Tanja; Farkas, Bálint
Wiener's lemma along primes and other subsequences
Advances in Mathematics, 347 :340 - 383
20194011.
Eckardt, Linda; Jankoviak, Adam; Robra-Bissantz, Susanne
Wollen Studierende in einer virtuellen Realität lernen? - Ein vergleichendes Meinungsbild
Seite 89-95
Teaching Trends
Braunschweig
2019ISBN: 9783830940128
4010.
Jacob, Birgit; Morris, Kirsten A.; Zwart, Hans
Zero dynamics for networks of waves
Automatica J. IFAC, 103 :310--321
2019- 2018
4009.
Sharma, M. K.; Göstl, Robert; Frijns, A. J. H.; Wieringa, F. P.; Kooman, J. P.; Sijbesma, R. P.; Smeulders, D. M. J.
A Fluorescent Micro-Optofluidic Sensor for In-Line Ion Selective Electrolyte Monitoring
IEEE Sensors Journal, 18 (10) :3946--3951
Mai 2018
ISSN: 1530-437X4008.
[1,2]-Migration Reactions Catalyzed by Gold Complexes and their Applications in Total Synthesis
Israel Journal of Chemistry, 58 (5) :596–607
2018
ISSN: 1869-58684007.
Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra; Wynn, Andrew
{\(\beta\)}-admissibility of observation operators for hypercontractive semigroups
J. Evol. Equ., 18 (1) :153--170
20184006.
Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra; Wynn, Andrew
β-admissibility of observation operators for hypercontractive semigroups
J. Evol. Equ., 18 (1) :153--170
20184005.
Daners, Daniel; Glück, Jochen
A criterion for the uniform eventual positivity of operator semigroups
Integral Equations Operator Theory, 90 (4) :Paper No. 46, 19
20184004.
Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
A minimax problem for sums of translates on the torus
Transactions of the London Mathematical Society, 5 (1) :1-46
20184003.
Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press4002.
Ehrhardt, Matthias; Günther, Michael
A new convergent explicit Tree-Grid method for HJB equations in one space dimension
Preprint, 17 (06)
20184001.
Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press4000.
Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press3999.
Heilmann, Margareta; Raşa, Ioan
A nice representation for a link between Baskakov-and Szász–Mirakjan–Durrmeyer operators and their kantorovich variants
Results in Mathematics, 74 (1) :9
20183998.
Glück, Jochen
A note on lattice ordered $C^*$-algebras and Perron-Frobenius theory
Math. Nachr., 291 (11-12) :1727--1732
20183997.
Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the lattice Boltzmann Method
Computers & Fluids, 172 :241–250
2018
Herausgeber: Pergamon3996.
Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the Lattice Boltzmann Method
Computers & Fluids, 172 :241--250
2018
Herausgeber: Pergamon3995.
Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the lattice Boltzmann Method
Computers & Fluids, 172 :241–250
2018
Herausgeber: Pergamon3994.
Harbrecht, Helmut; Zaspel, Peter
A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters
20183993.
Gottschalk, Hanno; Saadi, Mohamed; Doganay, Onur Tanil; Klamroth, Kathrin; Schmitz, Sebastian
Adjoint method to calculate the shape gradients of failure probabilities for turbomachinery components
Conference Proceedings, ASME Turbo Expo
20183992.
Pletsch, Kai Kilian
Aerosol basierte PFT Eliminierung mittels satischem Mischer
20183991.
Carrillo, Jose; Choi, Young-Pil; Totzeck, Claudia; Tse, Oliver
An analytical framework for a consensus-based global optimization method
Mathematical Models and Methods in Applied Sciences, 28 (6) :1037-1066
2018