Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2020

4364.

Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH \(_{2}\) CH \(_{2}\) CH \(_{2}\) ) \(_{3}\) Sn \(^{+}\)
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 2020

4363.

Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH \(_{2}\) CH \(_{2}\) CH \(_{2}\) ) \(_{3}\) Sn \(^{+}\)
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 2020

4362.

Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH 2 CH 2 CH 2 ) 3 Sn +
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 2020

4361.

Izak-Nau, Emilia; Campagna, Davide; Baumann, Christoph; Göstl, Robert
Polymer mechanochemistry-enabled pericyclic reactions
Polymer Chemistry, 11 (13) :2274--2299
März 2020
ISSN: 1759-9962

4360.

Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) \(_{2}\) H \(^{+}\)
Rapid Communications in Mass Spectrometry
März 2020

4359.

Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) \(_{2}\) H \(^{+}\)
Rapid Communications in Mass Spectrometry
März 2020

4358.

Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) 2 H +
Rapid Communications in Mass Spectrometry
März 2020

4357.

Sun, Jing; Su, Juanjuan; Ma, Chao; Göstl, Robert; Herrmann, Andreas; Liu, Kai; Zhang, Hongjie
Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers
Advanced Materials, 32 (6) :1906360
Februar 2020
ISSN: 1521-4095

4356.

[english] Meuter, Nico; Spinnen, Sebastian; Tausch, Michael W.
Two Versatile Experiments for Teaching Photochemistry: Photon Upconversion by TTA and All Optical INHIBIT Logical Gate
EPA (European Photochemistry Association) Newsletter (97) :9-15
Februar 2020

4355.

Stratigaki, Maria; Baumann, Christoph; Breemen, Lambert C. A. van; Heuts, Johan P. A.; Sijbesma, Rint P.; Göstl, Robert
Fractography of poly(N-isopropylacrylamide) hydrogel networks crosslinked with mechanofluorophores using confocal laser scanning microscopy
Polymer Chemistry, 11 (2) :358--366
Januar 2020
ISSN: 1759-9962

4354.


1-Nitrogen-Functionalized 2-Haloalkenes (Update 2020)
Science of Synthesis, Knowledge Updates (2) :235–275
2020

4353.

Budde, Christian; Farkas, B{\'a}lint
A {D}esch-{S}chappacher perturbation theorem for bi-continuous semigroups
Math. Nachr., 293 (6) :1053-1073
2020

4352.

Budde, Christian; Farkas, Bálint
A Desch-Schappacher perturbation theorem for bi-continuous semigroups
Math. Nachr., 293 (6) :1053-1073
2020

4351.

Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail; others
A functional limit theorem for coin tossing Markov chains
, Annales de l'Institut Henri Poincaré, Probabilités et StatistiquesBand56, Seite 2996--3019
Institut Henri Poincaré
2020

4350.

Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail; others
A functional limit theorem for coin tossing Markov chains
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 56 (4) :2996–3019
2020
Herausgeber: Institute of Mathematical Statistics

4349.

Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117–138
2020
Herausgeber: Elsevier

4348.

Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117--138
April 2020
Herausgeber: North-Holland

4347.

Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117–138
2020
Herausgeber: Elsevier

4346.

Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361–371
2020
Herausgeber: EDP Sciences

4345.

Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361–371
2020
Herausgeber: EDP Sciences

4344.

Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361--371
Februar 2020
Herausgeber: EDP Sciences

4343.

Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361–371
2020
Herausgeber: EDP Sciences

4342.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations
SN Partial Differential Equations and Applications, 1 (2) :1--34
2020
Herausgeber: Springer International Publishing

4341.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations
SN Partial Differential Equations and Applications, 1 (2) :1–34
2020
Herausgeber: Springer International Publishing

4340.

Aab, Alexander; others
A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory
Astrophys. J., 902 (2) :105
2020