Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2021
4493.
De Sterck, H.; Falgout, R. D.; Friedhoff, S.; Krzysik, O. A.; MacLachlan, S. P.
Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2367, 22
20214492.
De Sterck, H.; Falgout, R. D.; Friedhoff, S.; Krzysik, O. A.; MacLachlan, S. P.
Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2367, 22
20214491.
Aragão Belé, Tiago Gomes; Neves, Tauany F.; Cristale, Joyce; Prediher, Patrícia; Constapel, Marc; Dantas, Renato F.
Oxidation of microplastics by O3 and O3/H2O2: Surface modification and adsorption capacity
Journal of Water Process Engineering, 41
20214490.
Goettlich, Simone; Totzeck, Claudia
Parameter calibration with stochastic gradient descent for interacting particle systems driven by neural networks
Mathematics of Control, Signals, and Systems, 34 :185-214
20214489.
Kulchytska-Ruchka, I.; Schöps, S.; Hinze, M.; Friedhoff, S.; Ulbrich, S.
PASIROM: parallel simulation and robust optimization of electro-mechanical energy converters
, German success stories in industrial mathematics Band 35 aus Math. Ind.
Seite 135-140
Herausgeber: Springer, Cham
2021
135-1404488.
Kulchytska-Ruchka, I.; Schöps, S.; Hinze, M.; Friedhoff, S.; Ulbrich, S.
PASIROM: parallel simulation and robust optimization of electro-mechanical energy converters
, German success stories in industrial mathematics Band 35 aus Math. Ind.
Seite 135-140
Herausgeber: Springer, Cham
2021
135-1404487.
Kulchytska-Ruchka, I.; Schöps, S.; Hinze, M.; Friedhoff, S.; Ulbrich, S.
PASIROM: parallel simulation and robust optimization of electro-mechanical energy converters
, German success stories in industrial mathematics Band 35 aus Math. Ind.
Seite 135-140
Herausgeber: Springer, Cham
2021
135-1404486.
[english] Zimmermann, Marc; Domke, Dennis; Schween, Michael
Photobromination (SR) and Corresp. SN1 Reactions – Key Reactions for the Development and the Application of the Concept of Hyperconjugation
World Journal of Chemical Education, 9 :175-184
20214485.
Ehrhardt, Matthias
Pricing basket default swaps using quasi-analytic techniques
Decisions in Economics and Finance, 44 :241–267
2021
Herausgeber: Springer Verlag Italia4484.
Ehrhardt, Matthias
Pricing basket default swaps using quasi-analytic techniques
Decisions in Economics and Finance, 44 :241–267
2021
Herausgeber: Springer Verlag Italia4483.
Ehrhardt, Matthias
Pricing basket default swaps using quasi-analytic techniques
Decisions in Economics and Finance, 44 :241--267
2021
Herausgeber: Springer International Publishing4482.
Stiglmayr, Michael; Gaul, Daniela
Projekt Ride-Hailing Wuppertal
In Matthias Ehrhardt and Michael G, Editor, Erfolgsformeln - Anwendungen der Mathematik
20214481.
Frommer, Andreas; Jacob, Birgit; Vorberg, Lukas; Wyss, Christian; Zwaan, Ian
Pseudospectrum enclosures by discretization
Integral Equations OperatorTheory, 93 :Article No 9, 32 p.
20214480.
Bannenberg, MWFM; Ciccazzo, A
Reduced order multirate schemes for coupled differential-algebraic systems
Applied Numerical Mathematics, 168 :104--114
2021
Herausgeber: North-Holland4479.
Bannenberg, MWFM; Ciccazzo, A
Reduced order multirate schemes for coupled differential-algebraic systems
Applied Numerical Mathematics, 168 :104–114
2021
Herausgeber: North-Holland4478.
Bannenberg, MWFM; Ciccazzo, A
Reduced order multirate schemes for coupled differential-algebraic systems
Applied Numerical Mathematics, 168 :104–114
2021
Herausgeber: North-Holland4477.
Sabirov, K.K.; Yusupov, J.R.; Aripov, M.M.; Ehrhardt, M.; Matrasulov, D.U.
Reflectionless propagation of {Manakov} solitons on a line: A model based on the concept of transparent boundary conditions
Phys. Rev. E, 103 (4) :043305
2021
Herausgeber: APS4476.
Ehrhardt, Matthias
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4475.
Ehrhardt, Matthias
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4474.
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4473.
Acu, Ana-Maria; Gonska, Heiner; Heilmann, Margareta
Remarks on a Bernstein-type operator of Aldaz, Kounchev and Render
J. Numer. Anal. Approx. Theory, 50 (1) :3-11
20214472.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Results in Applied Mathematics
20214471.
Grogorick, Linda
Rezension "Wie Corona die Hochschullehre verändert"
HMD - Praxis der Wirtschaftsinformatik, 58 :1504–1507
20214470.
Jacob, Birgit; Kaiser, Julia T.; Zwart, Hans
Riesz bases of port-Hamiltonian systems
SIAM J. Control Optim., 59 (6) :4646-4665
20214469.
Bartel, Andreas; Ehrhardt, Matthias; Günther, Michael
Rosenbrock--Wanner-Type Methods
2021