Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2021

4492.

Abreu, Pedro; others
Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resources
PoS, ICRC2021 :232
2021

4491.

Donatelli, Marco; Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano; Sesana, Debora
Multigrid methods for block-Toeplitz linear systems: convergence analysis and applications
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2356, 20
2021

4490.

Donatelli, Marco; Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano; Sesana, Debora
Multigrid methods for block-Toeplitz linear systems: convergence analysis and applications
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2356, 20
2021
ISSN: 1070-5325

4489.

Donatelli, Marco; Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano; Sesana, Debora
Multigrid methods for block-Toeplitz linear systems: convergence analysis and applications
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2356, 20
2021
ISSN: 1070-5325

4488.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; others
Multilevel Picard iterations for solving smooth semilinear parabolic heat equations
Partial Differential Equations and Applications, 2 (6) :1--31
2021
Herausgeber: Springer

4487.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; others
Multilevel Picard iterations for solving smooth semilinear parabolic heat equations
Partial Differential Equations and Applications, 2 (6) :1–31
2021
Herausgeber: Springer International Publishing

4486.

Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano
Multilevel symmetrized Toeplitz structures and spectral distribution results for the related matrix sequences
Electron. J. Linear Algebra, 37 :370-386
2021

4485.

Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano
Multilevel symmetrized Toeplitz structures and spectral distribution results for the related matrix sequences
Electron. J. Linear Algebra, 37 :370-386
2021

4484.

Ferrari, Paola; Furci, Isabella; Serra-Capizzano, Stefano
Multilevel symmetrized Toeplitz structures and spectral distribution results for the related matrix sequences
Electron. J. Linear Algebra, 37 :370-386
2021

4483.

Hachtel, Christoph; Bartel, Andreas; Günther, Michael; Sandu, Adrian
Multirate implicit Euler schemes for a class of differential--algebraic equations of index-1
Journal of Computational and Applied Mathematics, 387 :112499
2021
Herausgeber: North-Holland

4482.

Hachtel, Christoph; Bartel, Andreas; Günther, Michael; Sandu, Adrian
Multirate implicit Euler schemes for a class of differential-algebraic equations of index-1
Journal of Computational and Applied Mathematics, 387 :112499
2021
Herausgeber: North-Holland

4481.

Hachtel, Christoph; Bartel, Andreas; Günther, Michael; Sandu, Adrian
Multirate implicit Euler schemes for a class of differential-algebraic equations of index-1
Journal of Computational and Applied Mathematics, 387 :112499
2021
Herausgeber: North-Holland

4480.

Günther, Michael; Sandu, Adrian
Multirate linearly-implicit GARK schemes
BIT Numerical Mathematics :1--33
2021
Herausgeber: Springer Netherlands

4479.

Lübke, Marco
Neuartige multifunktionelle Tenside auf Basis nachwachsender Rohstoffe
2021

4478.

Claus, L.; Bolten, Matthias
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4477.

Claus, L.; Bolten, M.
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4476.

Claus, L.; Bolten, M.
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4475.

Eichfelder, Gabriele; Klamroth, Kathrin; Niebling, Julia
Nonconvex constrained optimization by a filtering branch and bound
Journal of Global Optimization, 80 :31-61
2021

4474.

Mironchenko, Andrii; Kawan, Christoph; Glück, Jochen
Nonlinear small-gain theorems for input-to-state stability of infinite interconnections
Math. Control Signals Systems, 33 (4) :573--615
2021

4473.

Krämer, Veronika; Barwari, Beawer; Burgmann, Sebastian; Rohde, Martin; Rentschler, Simon; Holzknecht, Christopher; Gmelin, Christoph; Janoske, Uwe
Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique
International Journal of Multiphase Flow, 145 :103808
Dezember 2021
Herausgeber: Elsevier {BV}

4472.

Jacob, Birgit; Zwart, Hans
Observability for port-Hamiltonian systems
European Control Conference (ECC) :2052-2057
2021

4471.

Markert, Clara; Thinius, Marco; Lehmann, Laura; Heintz, Chris; Stappert, Florian; Wissdorf, Walter; Kersten, Hendrik; Benter, Thorsten; Schneider, Bradley B.; Covey, Thomas R.
Observation of charged droplets from electrospray ionization (ESI) plumes in API mass spectrometers
Analytical and Bioanalytical Chemistry
Juli 2021
ISSN: 1618-2642, 1618-2650

4470.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3)
2021

4469.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3) :Paper No. e2301, 30
2021

4468.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3) :Paper No. e2301, 30
2021