Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2021

4567.

Günther, Michael; Bartel, Andreas; Jacob, Birgit; Reis, Timo
Dynamic iteration schemes and port-Hamiltonian formulation in coupled differential-algebraic equation circuit simulation
International Journal of Circuit Theory and Applications, 49 (2) :430–452
2021
Herausgeber: John Wiley & Sons

4566.

Günther, Michael; Bartel, Andreas; Jacob, Birgit; Reis, Timo
Dynamic iteration schemes and port-Hamiltonian formulation in coupled differential-algebraic equation circuit simulation
International Journal of Circuit Theory and Applications, 49 (2) :430–452
2021
Herausgeber: John Wiley & Sons

4565.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
E-Book-flankiertes Experimentalkonzept zu mikrobiellen Brennstoffzellen in der Sekundarstufe II
Digitalisation in Chemistry Education. Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie
Seite 133-141
Herausgeber: Johannes Huwer, Amitabh Banerji und Nicole Graulich, Waxmann, Münster
2021
133-141

ISBN: 978-3-8309-4418-8

4564.

Felpel, M.; Kienitz, J.; McWalter, T. A.
Effective stochastic volatility: Applications to {ZABR}-type models
Quantitative Finance, 21 (5) :837-852
2021
Herausgeber: Routledge

4563.

Felpel, M.; Kienitz, J.; McWalter, T. A.
Effective stochastic volatility: applications to ZABR-type models
Quantitative Finance, 21 (5) :837–852
2021
Herausgeber: Routledge

4562.

Haussmann, N.; Zang, M.; Stroka, S.; Mease, R.; Schmuelling, B.; Clemens, M.
Efficient Assessment of the Human Exposure to Low-Frequency Magnetic Fields Based on Free Space Field Measurements
23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG 2021), Cancun, Mexico, Online Conference, 16.-21.01.2022. Two-page digest submitted.
2021

4561.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan
Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II
Positivity, 25 :1585-1599
2021

4560.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Eine Lehrkräfte-Fortbildung im Portrait: Lowcost Experimente zu verschiedenen Brennstoffzelltypen für den Einsatz im Chemieunterricht.
CHEMKON
2021

4559.

Alameddine, Jean-Marco; others
Electromagnetic Shower Simulation for CORSIKA 8
PoS, ICRC2021 :428
2021

4558.

Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy markets forecasting. From inferential statistics to machine learning: The German case
Energies, 14 (2) :364
2021
Herausgeber: MDPI

4557.

Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy markets forecasting. From inferential statistics to machine learning: The German case
Energies, 14 (2) :364
2021
Herausgeber: MDPI

4556.

Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case
Energies, 14 (2) :364
Januar 2021
Herausgeber: MDPI
ISSN: 1996-1073

4555.


Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case. Energies 2021, 14, 364
2021

4554.

Kossaczk{\'a}, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order {WENO} shock-capturing schemes with deep learning
Res. Appl. Math., 12 :100201
2021
Herausgeber: Elsevier

4553.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Herausgeber: Elsevier

4552.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Herausgeber: Elsevier

4551.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Herausgeber: Elsevier

4550.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Herausgeber: Elsevier

4549.

Farkas, Bálint; Csomós, Petra; Kovács, Balázs
Error estimates for a splitting integrator for semilinear boundary coupled systems
IMA J. Numerical Analysis
2021

4548.

Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, Matthias; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
2021

4547.

Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, M.; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
2021

4546.

Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, M.; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
2021

4545.

Glück, Jochen; Mugnolo, Delio
Eventual domination for linear evolution equations
Math. Z., 299 (3-4) :1421--1443
2021

4544.

Abreu, Pedro; others
Expected performance of the AugerPrime Radio Detector
PoS, ICRC2021 :262
2021

4543.

Tovar, Carmen M.; Haack, Alexander; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K
Physical Chemistry Chemical Physics, 23 (9) :5176-5186
2021