Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2021

4668.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient descent algorithm for the Heston model
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal

4667.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A Gradient Descent Algorithm for the Heston model
arXiv preprint arXiv:2110.14370
2021

4666.

Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
A homeomorphism theorem for sums of translates
2021

4665.

Kühn, Jan; Bartel, Andreas; Putek, Piotr
A hysteresis loss model for Tellinen’s scalar hysteresis model
In van Beurden, Martijn and Budko, Neil and Schilders, Wil, Editor, Scientific Computing in Electrical Engineering: SCEE 2020, Eindhoven, The Netherlands, February 2020ausMathematics in Industry, Seite 241–250
In van Beurden, Martijn and Budko, Neil and Schilders, Wil, Editor
Herausgeber: Springer Cham
2021

4664.

Kühn, Jan; Bartel, Andreas; Putek, Piotr
A Hysteresis Loss Model for Tellinen’s Scalar Hysteresis Model
Scientific Computing in Electrical Engineering: SCEE 2020, Eindhoven, The Netherlands, February 2020
Seite 241--250
Herausgeber: Springer International Publishing Cham
2021
241--250

4663.

Schnepper, Teresa; Klamroth, Kathrin; Puerto, Justo; Stiglmayr, Michael
A Local Analysis to Determine All Optimal Solutions of p-k-max Location Problems on Networks
Discrete Applied Mathematics, 296 :217-234
2021

4662.

Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on GPUs
In Dimov, Ivan and Fidanova, Stefka, Editor, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019, Seite 196–208
In Dimov, Ivan and Fidanova, Stefka, Editor
Herausgeber: Springer Cham
2021

4661.

Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on GPUs
In Dimov, Ivan and Fidanova, Stefka, Editor, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019, Seite 196–208
In Dimov, Ivan and Fidanova, Stefka, Editor
Herausgeber: Springer Cham
2021

4660.

Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on gpus
, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019Band902, Seite 196--208
Springer International Publishing
2021

4659.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-equilibrium bounce-back boundary condition for thermal multispeed LBM
Journal of Computational Science, 53 :101364
2021
Herausgeber: Elsevier

4658.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-equilibrium bounce-back boundary condition for thermal multispeed LBM
J. Comput. Sci., 53 :101364
2021
Herausgeber: Elsevier {BV}

4657.

Glück, Jochen
A note on the fixed space of positive contractions
2021

4656.

Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal

4655.

Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal

4654.

Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal

4653.

Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel Sparse Grid Combination Technique using the Parareal Algorithm
2021

4652.

Teng, Long
A review of tree-based approaches to solve forward-backward stochastic differential equations
Journal of Computational Finance, 25 (3) :125–159
2021
Herausgeber: Incisive Media

4651.

Teng, Long
A review of tree-based approaches to solve forward-backward stochastic differential equations
JCF, 25 (3) :125--159
2021

4650.

Caracas, Ioana Alexandra; others
A tau scenario application to a search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory
PoS, ICRC2021 :1145
2021

4649.

Kühn, Jan; Bartel, Andreas; Putek, Piotr
A thermal extension and loss model for Tellinen’s hysteresis model
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 40 (2) :126–141
2021
Herausgeber: Emerald Group Publishing

4648.

Kühn, Jan; Bartel, Andreas; Putek, Piotr
A thermal extension and loss model for Tellinen’s hysteresis model
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 40 (2) :126--141
2021
Herausgeber: Emerald Publishing Limited

4647.

Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1--4
2021
Herausgeber: IEEE

4646.

Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1–4
2021
Herausgeber: IEEE

4645.

Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1–4
2021
Herausgeber: IEEE

4644.

Grogorick, Linda; Lamprecht, Jens
AC:DC – Agile and Collaborative Digital Classroom
HMD - Praxis der Wirtschaftsinformatik, 58 :858–869
2021