Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2021
4642.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient descent algorithm for the Heston model
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal4641.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A Gradient Descent Algorithm for the Heston model
arXiv preprint arXiv:2110.14370
20214640.
Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
A homeomorphism theorem for sums of translates
20214639.
Kühn, Jan; Bartel, Andreas; Putek, Piotr
A hysteresis loss model for Tellinen’s scalar hysteresis model
In van Beurden, Martijn and Budko, Neil and Schilders, Wil, Editor, Scientific Computing in Electrical Engineering: SCEE 2020, Eindhoven, The Netherlands, February 2020ausMathematics in Industry, Seite 241–250
In van Beurden, Martijn and Budko, Neil and Schilders, Wil, Editor
Herausgeber: Springer Cham
20214638.
Kühn, Jan; Bartel, Andreas; Putek, Piotr
A Hysteresis Loss Model for Tellinen’s Scalar Hysteresis Model
Scientific Computing in Electrical Engineering: SCEE 2020, Eindhoven, The Netherlands, February 2020
Seite 241--250
Herausgeber: Springer International Publishing Cham
2021
241--2504637.
Schnepper, Teresa; Klamroth, Kathrin; Puerto, Justo; Stiglmayr, Michael
A Local Analysis to Determine All Optimal Solutions of p-k-max Location Problems on Networks
Discrete Applied Mathematics, 296 :217-234
20214636.
Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on GPUs
In Dimov, Ivan and Fidanova, Stefka, Editor, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019, Seite 196–208
In Dimov, Ivan and Fidanova, Stefka, Editor
Herausgeber: Springer Cham
20214635.
Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on GPUs
In Dimov, Ivan and Fidanova, Stefka, Editor, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019, Seite 196–208
In Dimov, Ivan and Fidanova, Stefka, Editor
Herausgeber: Springer Cham
20214634.
Kapllani, Lorenc; Teng, Long; Ehrhardt, Matthias
A multistep scheme to solve backward stochastic differential equations for option pricing on gpus
, Advances in High Performance Computing: Results of the International Conference on “High Performance Computing” Borovets, Bulgaria, 2019Band902, Seite 196--208
Springer International Publishing
20214633.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-equilibrium bounce-back boundary condition for thermal multispeed LBM
Journal of Computational Science, 53 :101364
2021
Herausgeber: Elsevier4632.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-equilibrium bounce-back boundary condition for thermal multispeed LBM
J. Comput. Sci., 53 :101364
2021
Herausgeber: Elsevier {BV}4631.
4630.
Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal4629.
Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal4628.
Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel sparse grid combination technique using the Parareal Algorithm
Preprint IMACM
2021
Herausgeber: Bergische Universität Wuppertal4627.
Clevenhaus, Anna; Ehrhardt, Matthias; Günther, Michael
A parallel Sparse Grid Combination Technique using the Parareal Algorithm
20214626.
Teng, Long
A review of tree-based approaches to solve forward-backward stochastic differential equations
Journal of Computational Finance, 25 (3) :125–159
2021
Herausgeber: Incisive Media4625.
Teng, Long
A review of tree-based approaches to solve forward-backward stochastic differential equations
JCF, 25 (3) :125--159
20214624.
Caracas, Ioana Alexandra; others
A tau scenario application to a search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory
PoS, ICRC2021 :1145
20214623.
Kühn, Jan; Bartel, Andreas; Putek, Piotr
A thermal extension and loss model for Tellinen’s hysteresis model
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 40 (2) :126–141
2021
Herausgeber: Emerald Group Publishing4622.
Kühn, Jan; Bartel, Andreas; Putek, Piotr
A thermal extension and loss model for Tellinen’s hysteresis model
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 40 (2) :126--141
2021
Herausgeber: Emerald Publishing Limited4621.
Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1--4
2021
Herausgeber: IEEE4620.
Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1–4
2021
Herausgeber: IEEE4619.
Clemens, Markus; Kasolis, Fotios; Henkel, M-L; Kähne, B; Günther, Michael
A two-step Darwin model time-domain formulation for quasi-static electromagnetic field calculations
IEEE Transactions on Magnetics, 57 (6) :1–4
2021
Herausgeber: IEEE4618.
Janssen, N.; Gesell, H.; Gutt, R.; Janoske, U.
Adaption of the Aluminium Electrolysis to Volatile Power Supply: Development of a Predictive Model to Investigate the Thermal Behavior of a Cell
presented at NAFEMS World Congress 2022
Oktober 2021