Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4868.

Kienitz, J.; Lee, G.; Nowaczyk, N.; Geng, N.
Dynamically Controlled Kernel Estimation
RISK, 1
2022

4867.

Felpel, Mike; Kienitz, Jörg; McWalter, Thomas
Effective Markovian projection: Application to CMS spread options and mid-curve swaptions
Quantitative Finance, 22 (6) :1169–1192
2022
Herausgeber: Routledge

4866.

Felpel, M.; Kienitz, J.; McWalter, T. A.
Effective Markovian projection: application to CMS spread options and mid-curve swaptions
Quantitative Finance, 22 (6) :1169-1192
2022
Herausgeber: Routledge

4865.

Reiners, Malena; Klamroth, Kathrin; Heldmann, Fabian; Stiglmayr, Michael
Efficient and sparse neural networks by pruning weights in a multiobjective learning approach
Computers & Operations Research :105676
2022

4864.

[german] Pansegau, Svenja; Wenz, Helen; Busker, Maike
Eine experimentelle Untersuchung von Zigarettenfiltern - Inhaltsstoffe eines Zigarettenfilters
NiU-Chemie, 33 :22-25
2022

4863.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Einsatz eines digitalen & interaktiven Selbstlernbuchs zur Einführung in die organische Chemie - erste Erprobungen im Chemieunterricht und motivationale Betrachtungen
Chemie & Schule, 2022 (4) :5-9
2022

4862.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael; De Gersem, Herbert; Schöps, Sebastian
Electromagnetic Quasistatic Field Formulations of Darwin Type
arXiv preprint arXiv:2204.06286
2022

4861.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael; De Gersem, Herbert; Schöps, Sebastian
Electromagnetic quasistatic field formulations of Darwin type
Preprint :1–7
2022

4860.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael; De Gersem, Herbert; Schöps, Sebastian
Electromagnetic quasistatic field formulations of Darwin type
Preprint :1–7
2022

4859.

Schillings, Claudia; Totzeck, Claudia; Wacker, Philipp
Ensemble-based gradient inference for particle methods in optimization and sampling
2022

4858.

Lübke, Steffen
Entwicklung und Optimierung einer kleintechnischen Anlage zur Behandlung galvanischer Abwässer mittels Aersolbasierter Eliminierung (ABE)
2022

4857.

Gaul, Daniela; Klamroth, Kathrin; Stiglmayr, Michael
Event-based MILP models for ridepooling applications
European Journal of Operational Research, 301 :1048-1063
2022

4856.

Glück, Jochen
Evolution equations with eventually positive solutions
Eur. Math. Soc. Mag. (123) :4--11
2022

4855.

Halffmann, Pascal; Schäfer, Luca E.; Dächert, Kerstin; Klamroth, Kathrin; Ruzika, Stefan
Exact algorithms for multiobjective linear optimization problems with integer variables - a state of the art survey
Journal of Multicriteria Decision Analysis, 29 :343–363
2022

4854.

Braschke, Kamil Oskar; Zoller, Julian; Freese, Florian; Dittler, Achim; Janoske, Uwe
Fast adhesion calculation for collisions between arbitrarily shaped particles and a wall
Powder Technology, 405 :117494
2022
ISSN: 0032-5910

4853.

Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
Fenton type minimax problems for sum of translates functions
2022

4852.

Könen, David; Schmidt, Daniel; Spisla, Christiane
Finding all minimum cost flows and a faster algorithm for the K best flow problem
Discrete Applied Mathematics, 321 :333-349
2022
ISSN: 0166-218X

4851.

Hensel, Hendrik; Henkel, Marvin-Lucas; Haussmann, Norman; Jörgens, Christoph; Stroka, Steven; Clemens, Markus
GPU-Accelerated Field Simulation of HVAC Gas Insulated Lines
2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), Seite 1-2
2022

4850.

Teng, Long
Gradient boosting-based numerical methods for high dimensional backward stochastic differential equations
Appl. Math. Comput., 426 :127119
2022

4849.

Teng, Long
Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations
Applied Mathematics and Computation, 426 :127119
2022
Herausgeber: Elsevier

4848.

[german] Zeller, Diana
Heimische Ökosysteme erkunden. Mit Maphub kooperative, ökologische Kartierung umsetzen.
Digital Unterricht Biologie, 1 (1/2022) :10-11
Januar 2022

4847.

[english] Mertineit, Ann-Kathrin; Burdinski, Dirk; Zulauf, Bert; Hackradt, Hans; Meuter, Nico; Bohrmann-Linde, Claudia; Schaper, Klaus
Helping Digital Natives to Become Digital Natives Through Production Standards, Research AND Quality Ssystems?
Seite 3913-3920
2022

ISBN: 978-84-09-45476-1

4846.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups
BIT Numer. Math.
Januar 2022
Herausgeber: Springer
ISSN: 1572-9125

4845.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht

4844.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands