Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4893.

Paquete, Luís; Schulze, Britta; Stiglmayr, Michael; Lourenço, Ana Catarina
Computing Representations using Hypervolume Scalarizations
Computers and Operations Research, 137 :105349
2022

4892.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4891.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4890.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation matrices driven by stochastic isospectral flows
Progress in Industrial Mathematics at ECMI 2021, Seite 455–461
Herausgeber: Springer Cham
2022

4889.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael
Correlation Matrices Driven by Stochastic Isospectral Flows
Progress in Industrial Mathematics at ECMI 2021
Seite 455--461
Herausgeber: Springer International Publishing Cham
2022
455--461

4888.

Arora, Sahiba; Glück, Jochen
Criteria for eventual domination of operator semigroups and resolvents
To appear in the Proceedings of IWOTA 2021, Lancaster
2022

4887.

Anna Braun, geboren Tscherniewski
Crowd Management at Train Stations in Case of Large-Scale Emergency Events
Bergische Universität Wuppertal
2022

4886.

Alves Batista, Rafael; others
CRPropa 3.2 -- an advanced framework for high-energy particle propagation in extragalactic and galactic spaces
JCAP, 09 :035
2022

4885.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4884.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4883.

Schweitzer, Marcel
Decay bounds for Bernstein functions of Hermitian matrices with applications to the fractional graph Laplacian
Electron. Trans. Numer. Anal., 55 :438-454
2022

4882.

Stiglmayr, Michael; Figueira, José Rui; Klamroth, Kathrin; Paquete, Luís; Schulze, Britta
Decision Space Robustness for Multiobjective Integer Linear Programming
Annals of Operations Research, 319 :1769--1791
2022

4881.

Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
2022

4880.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Digitalisierung: Mit einem E‐Book in die organische Chemie starten
Nachrichten aus der Chemie, 70 (1) :34-36
2022

4879.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4878.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4877.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 439–445
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4876.

Jäschke, Jens; Ehrhardt, M.; Günther, M.; Jacob, Birgit
Discrete port-Hamiltonian Coupled Heat Transfer
Progress in Industrial Mathematics at ECMI 2021, The European Consortium for Mathematics in Industry, Seite 439-445
In M. Ehrhardt and M. Günther, Editor
Herausgeber: Springer
2022

4875.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
Discrete port-Hamiltonian coupled heat transfer
Progress in Industrial Mathematics at ECMI 2021
Seite 439--445
Herausgeber: Springer International Publishing Cham
2022
439--445

4874.

Edeko, Nikolai; Kreidler, Henrik
Distal systems in topological dynamics and ergodic theory
2022

4873.

Lugo, Pedro L.; Straccia, V.G.; Rivela, Cynthia B.; Patroescu-Klotz, Iulia; Illmann, Niklas; Teruel, Mariano A.; Wiesen, Peter; Blanco, María B.
Diurnal photodegradation of fluorinated diketones (FDKs) by OH radicals using different atmospheric simulation chambers: Role of keto-enol tautomerization on reactivity
Chemosphere, 286 :131562
Januar 2022
ISSN: 00456535

4872.

Khosrawi-Rad, Bijan; Grogorick, Linda; Keller, Paul; Schlimbach, Ricarda; Rinn, Heidi; Robra-Bissantz, Susanne
Do you trust the Bot? – Entwicklung und Evaluation eines Conversational Agents zur Klassifikation von Lernstilen
Seite 75-80
20. E-Learning Fachtagung Informatik (DeLFI)
Karlsruhe
2022

ISBN: 978-3-88579-716-6

4871.

Rohde, Martin; Barwari, Beawer; Burgmann, Sebastian; Janoske, Uwe
Droplet motion induced by superposition of shear flow and horizontal surface vibration
International Journal of Multiphase Flow, 155 :104163
2022
Herausgeber: Pergamon

4870.

McWalter, Thomas A; Kienitz, Jörg; Nowaczyk, Nikolai; Rudd, Ralph; Acar, Sarp K.
Dynamic initial margin estimation based on quantiles of Johnson distributions
Journal of Credit Risk, 18 :93–116
2022
Herausgeber: Incisive Media

4869.

Kienitz, Jörg; Lee, Gordon; Nowaczyk, Nikolai; Geng, N.
Dynamically controlled kernel estimation
Risk Cutting Edge, 1
2022
Herausgeber: Incisive Media