Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4817.

[german] Zeller, Diana
Heimische Ökosysteme erkunden. Mit Maphub kooperative, ökologische Kartierung umsetzen.
Digital Unterricht Biologie, 1 (1/2022) :10-11
Januar 2022

4816.

[english] Mertineit, Ann-Kathrin; Burdinski, Dirk; Zulauf, Bert; Hackradt, Hans; Meuter, Nico; Bohrmann-Linde, Claudia; Schaper, Klaus
Helping Digital Natives to Become Digital Natives Through Production Standards, Research AND Quality Ssystems?
Seite 3913-3920
2022

ISBN: 978-84-09-45476-1

4815.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups
BIT Numer. Math.
Januar 2022
Herausgeber: Springer
ISSN: 1572-9125

4814.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht

4813.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4812.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4811.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands

4810.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht

4809.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Ito SDEs on matrix Lie groups (Jan, 10.1007/s10543-021-00905-9, 2022)
BIT Numerical Mathematics, 62 (3) :1093--1093
2022
Herausgeber: SPRINGER VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

4808.

Nowaczyk, Nikolai; Kienitz, Jörg; Acar, Sarp Kaya; Liang, Qian
How deep is your model? Network topology selection from a model validation perspective
Journal of Mathematics in Industry, 12 (1) :1
2022
Herausgeber: Springer Verlag

4807.

Nowaczyk, N.; Kienitz, J.; Acar, S. K.; Liang, Q.
How deep is your model? Network topology selection from a model validation perspective
JMI, 12 (1)
2022

4806.


Hypervalent Iodine-Mediated Azidation Reactions
European Journal of Organic Chemistry (34)
2022
ISSN: 1434-193X

4805.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit Gauging of Electromagneto-Quasistatic Field Formulations
IEEE Transactions on Magnetics, 58 (9) :1--4
2022
Herausgeber: IEEE

4804.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE

4803.

Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE

4802.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4801.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250--279
2022
Herausgeber: North-Holland

4800.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4799.

Burgmann, Sebastian; Krämer, Veronika; Rohde, Martin; Dues, Michael; Janoske, Uwe
Inner and outer flow of an adhering droplet in shear flow
International Journal of Multiphase Flow, 153 :104140
2022
ISSN: 0301-9322

4798.

Hosfeld, René; Jacob, Birgit; Schwenninger, Felix
Integral input-to-state stability of unbounded bilinear control systems
Math. Control Signals Systems, 34 (2) :273-295
2022

4797.

Schweitzer, Marcel
Integral representations for higher-order Fréchet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
2022

4796.

Tovar, Carmen Maria; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Atmospheric Chemistry and Physics, 22 (10) :6989—7004
Mai 2022
ISSN: 1680-7324

4795.

Cardona, Alejandro L.; Gibilisco, Rodrigo G.; Rivela, Cynthia B.; Blanco, María B.; Patroescu-Klotz, Iulia; Illmann, Niklas; Wiesen, Peter; Teruel, Mariano A.
Kinetics, product distribution and atmospheric implications of the gas-phase oxidation of allyl sulfides by OH radicals
Chemosphere, 288 :132546
Februar 2022
ISSN: 00456535

4794.

Bolten, Matthias; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022

4793.

Bolten, M.; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022