Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2022
4968.
Ballaschk, Frederic
Oxidations with Iodine(V) Compounds – From Stoichiometric Compounds to Catalysts
In Ishihara, Kazuaki and Muñiz, Kilian, Editor, Iodine Catalysis in Organic Synthesis
Seite 299–334
Herausgeber: Wiley
1 Edition
Januar 2022
299–3344967.
Burgmann, Sebastian; Krämer, Veronika; Dues, Michael; Steinbock, Jonas; Büttner, Lars; Czarske, Juergen; Janoske, Uwe
tm - Technisches Messen, 89 (3) :178--188
20224966.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
#debunk YouTube-Videos - Ein didaktisches Konzept zum Einsatz von Videos im Chemieunterricht zur Stärkung der Digital Scientific Literacy
MNU journal, 75 (03) :197-201
20224965.
Acu, Ana-Maria; Dancs, Madalina; Heilmann, Margareta; Raşa, Ioan; Paşca, Vlad
A Bernstein-Schnabl type operator
Applicable Analysis and Discrete Mathematics, 16(2) :495-507
20224964.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A Characteristic Boundary Condition for Multispeed Lattice Boltzmann Methods
Accepted at Commun. Comput. Phys.
20224963.
Arora, Sahiba; Glück, Jochen
A characterization of the individual maximum and anti-maximum principle
20224962.
Fatoorehchi, Hooman; Ehrhardt, Matthias
A combined method for stability analysis of linear time invariant and nonlinear continuous-time control systems based on the Hermite-Fujiwara matrix and Cholesky decomposition
20224961.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224960.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224959.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224958.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
Progress in Industrial Mathematics at ECMI 2021
Seite 417--423
Herausgeber: Springer International Publishing Cham
2022
417--4234957.
Edeko, Nikolai; Kreidler, Henrik; Nagel, Rainer
A dynamical proof of the van der Corput inequality
Dynamical Systems, 37 :648-665
20224956.
Hermle, Patrick; Kreidler, Henrik
A Halmos-von Neumann theorem for actions of general groups
20224955.
Budde, Christian; Dobrick, Alexander; Glück, Jochen; Kunze, Markus
A monotone convergence theorem for strong Feller semigroups
20224954.
Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing4953.
Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing4952.
Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing4951.
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing LLC4950.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224949.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224948.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224947.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In M. Ehrhardt and M. Günther, Editor, Accepted at Progress in Industrial Mathematics at ECMI 2021
Herausgeber: Springer-Verlag, Berlin
2022ISBN: 978-3-031-11817-3
4946.
Ehrhardt, Matthias
A Nonstandard Finite Difference Scheme for a Time-Fractional Model of Zika Virus Transmission
20224945.
Treibert, Sarah; Brunner, Helmut; Ehrhardt, Matthias
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics
Mathematical Biosciences and Engineering, 19 (2) :1213–1238
2022
Herausgeber: AIMS Press4944.
Treibert, Sarah; Brunner, Helmut; Ehrhardt, Matthias
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics
Mathematical Biosciences and Engineering, 19 (2) :1213–1238
2022
Herausgeber: AIMS Press