Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2022
4942.
[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Strom aus Bäckerhefe
Nachrichten aus der Chemie, 70 (7-8) :18-21
Juli 20224941.
[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Entwicklung eines lowcost Experiments für den Chemieunterricht am Beispiel der enzymatischen Brennstoffzelle mit Lactase
CHEMKON, 29 (S1) :233-238
Juni 20224940.
[german] Zeller, Diana
Medialab – ein dreistufiges Modul zur Entwicklung digitalisierungsbezogener Kompetenzen im Studium des Chemie‐ und Sachunterrichtslehramts
CHEMKON, 29 (S1) :287-292
Juni 20224939.
Zou, Miancheng; Zhao, Pengkun; Fan, Jilin; Göstl, Robert; Herrmann, Andreas
Microgels as drug carriers for sonopharmacology
Journal of Polymer Science, 60 (12) :1864--1870
Juni 2022
ISSN: 2642-41694938.
[german] Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE im Chemieunterricht – von der Leitlinie BNE NRW zur exemplarischen Unterrichtseinbindung
CHEMKON, 29 (S1) :239-245
Juni 20224937.
[english] Bohrmann-Linde, Claudia; Zeller, Diana; Meuter, Nico; Tausch, Michael W.
Teaching Photochemistry: Experimental Approaches and Digital Media
ChemPhotoChem, 6 (6) :1-11
Juni 20224936.
Baumann, Christoph; Göstl, Robert
Triazole-Extended Anthracenes as Optical Force Probes
Synlett, 33 (9) :875--878
06 2022
ISSN: 0936-5214, 1437-20964935.
[german] Zeller, Diana; Meier, Monique
Videos interaktiv erweitern - Forschendes Lernen vielseitig unterstützen
Digital Unterricht Biologie, 4 :10-11
Mai 20224934.
Izak-Nau, Emilia; Braun, Susanne; Pich, Andrij; Göstl, Robert
Mechanically Resistant Poly(N-vinylcaprolactam) Microgels with Sacrificial Supramolecular Catechin Hydrogen Bonds
Advanced Science, 9 (12) :2104004
April 2022
ISSN: 2198-38444933.
Huo, Shuaidong; Liao, Zhihuan; Zhao, Pengkun; Zhou, Yu; Göstl, Robert; Herrmann, Andreas
Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation
Advanced Science, 9 (12) :2104696
April 2022
ISSN: 2198-38444932.
Schulte, M. Friederike; Izak-Nau, Emilia; Braun, Susanne; Pich, Andrij; Richtering, Walter; Göstl, Robert
Microgels react to force: mechanical properties, syntheses, and force-activated functions
Chemical Society Reviews, 51 (8) :2939--2956
April 2022
ISSN: 1460-47444931.
[german] Gökkus, Yasemin; Tausch, Michael W.
Explorative Studie zur partizipativen und nutzenorientierten Forschung in der Chemiedidaktik
CHEMKON, 29 (3) :117-124
April 20224930.
Küng, Robin; Göstl, Robert; Schmidt, Bernd M.
Release of Molecular Cargo from Polymer Systems by Mechanochemistry
Chemistry – A European Journal, 28 (17) :e202103860
03 2022
ISSN: 1521-37654929.
Stratigaki, Maria; Baumann, Christoph; Göstl, Robert
Confocal Microscopy Visualizes Particle–Crack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles
Macromolecules, 55 (3) :1060--1066
Februar 2022
ISSN: 0024-92974928.
Meng, Zhuojun; Liu, Qing; Zhang, Yi; Sun, Jing; Yang, Chenjing; Li, Hongyan; Loznik, Mark; Göstl, Robert; Chen, Dong; Wang, Fan; Clark, Noel A.; Zhang, Hongjie; Herrmann, Andreas; Liu, Kai
Highly Stiff and Stretchable DNA Liquid Crystalline Organogels with Super Plasticity, Ultrafast Self-Healing, and Magnetic Response Behaviors
Advanced Materials, 34 (3) :2106208
Januar 2022
ISSN: 1521-40954927.
Zou, Miancheng; Zhao, Pengkun; Huo, Shuaidong; Göstl, Robert; Herrmann, Andreas
Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound
ACS Macro Letters, 11 (1) :15-19
Januar 20224926.
Burgmann, Sebastian; Krämer, Veronika; Dues, Michael; Steinbock, Jonas; Büttner, Lars; Czarske, Juergen; Janoske, Uwe
tm - Technisches Messen, 89 (3) :178--188
20224925.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
#debunk YouTube-Videos - Ein didaktisches Konzept zum Einsatz von Videos im Chemieunterricht zur Stärkung der Digital Scientific Literacy
MNU journal, 75 (03) :197-201
20224924.
Acu, Ana-Maria; Dancs, Madalina; Heilmann, Margareta; Raşa, Ioan; Paşca, Vlad
A Bernstein-Schnabl type operator
Applicable Analysis and Discrete Mathematics, 16(2) :495-507
20224923.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A Characteristic Boundary Condition for Multispeed Lattice Boltzmann Methods
Accepted at Commun. Comput. Phys.
20224922.
Arora, Sahiba; Glück, Jochen
A characterization of the individual maximum and anti-maximum principle
20224921.
Fatoorehchi, Hooman; Ehrhardt, Matthias
A combined method for stability analysis of linear time invariant and nonlinear continuous-time control systems based on the Hermite-Fujiwara matrix and Cholesky decomposition
20224920.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224919.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
20224918.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021, Seite 417–423
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022