Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2025
5400.
Kiesling, Elisabeth
Unterrichtsmaterial Kreislaufwirtschaft - Den Kreislauf in Schwung bringen: Arbeitsblatt: 2.4 Carbon Capture and Stoage und Experiment: 2.5 Modellversuch zur Speicherung von Kohlenstoffdioxid in Kohleflözen
In Dr. Karl Hübner, Prof. Dr. Bernd Ralle, Editor
Herausgeber: Fonds der Chemischen Industrie im Verband der Chemischen Industrie e. V. (FCI)
April 20255399.
[german] Kiesling, Elisabeth; Bohrmann-Linde, Claudia
Von der Leitlinie BNE zum bilingual-englischen Schülerlabor- Konzeption, Erprobung und Evaluation einer bilingualen Experimentierumgebung im Fach Chemie zum Thema Carbon Capture and Storage
In Andreas Keil, Annika Hanau und Julian Dietze (Hg.): BNE in der Lehrkräftebildung. Erkenntnisse aus Forschung und Praxis., Editor, BNE in der Lehrkräftebildung - Erkenntnisse aus Forschung und Praxis
Seite 327-344
Herausgeber: Waxmann
Mai 2025
327-344ISBN: 978-3-8188-0035-2
5398.
Elghazi, Bouchra; Jacob, Birgit; Zwart, Hans
Well-posedness of a class of infinite-dimensional port-Hamiltonian systems with boundary control and observation
Januar 20255397.
Testa, Filippo
Well-Posedness of the Hodge Wave Equation on a Compact Manifold
20255396.
Acu, A.M.; Heilmann, Margareta; Raşa, I.
Convergence of linking Durrmeyer type modifications of generalized Baskatov operators
Bulleting of the Malaysian Math. Sciences Society5395.
Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings5394.
Günther, Michael
Einführung in die Finanzmathematik5393.
Al{\i}, G; Bartel, A
Electrical RLC networks and diodes5392.
Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :5875391.
Ehrhardt, Matthias
für Angewandte Analysis und Stochastik5390.
Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations5389.
High order tensor product interpolation in the Combination Technique
preprint, 14 :255388.
Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 3885387.
Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers5386.
Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs5385.
Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics5384.
Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics5383.
Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital5382.
Bartel, PD Dr A
Mathematische Modellierung in Anwendungen5381.
Model Order Reduction Techniques for Basket Option Pricing5380.
Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance5379.
Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems5378.
Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 3775377.
Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE5376.
Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs