Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 1991
343.
Heilmann, Margareta; Müller, Manfred
Equivalence of a weighted modulus of smoothness and a modified weighted K-functional
In Nevai, P. and Pinkus, A., Editor
Herausgeber: Academic Press
1991342.
Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991341.
Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991340.
Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991339.
Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C\(_{2}\)H\(_{4}\) + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991338.
Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C\(_{2}\)H\(_{4}\) + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991337.
Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C2H4 + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991336.
Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A\(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), A'\(^{3}\)\(\Delta\)\(_{u}\) and c\(^{1}\)\(\Sigma\)\(_{u}\)\(^{-}\) states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991335.
Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A\(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), A'\(^{3}\)\(\Delta\)\(_{u}\) and c\(^{1}\)\(\Sigma\)\(_{u}\)\(^{-}\) states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991334.
Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A3Σu+, A'3Δu and c1Σu- states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991333.
Tausch, Michael W.
Legende oder nicht Legende?
Praxis der Naturwissenschaften (Chemie), 40 :44
1991332.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991331.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991330.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991329.
[german] Tausch, Michael W.
Photochemie - aktuelle Bedeutung und Möglichkeiten der Integration in den Chemieunterricht
Praxis der Naturwissenschaften (Chemie), 40 (4) :2
1991328.
Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991327.
Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991326.
Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991325.
Bunker, Philip R.; Jensen, Per; Karpfen, Alfred
The \(\nu\)\(_{1}\) + \(\nu\)\(_{2}\) = 4 stretching overtones of the HF dimer, and H-atom exchange
Journal of Molecular Spectroscopy, 149 (2) :512-518
1991324.
Bunker, Philip R.; Jensen, Per; Karpfen, Alfred
The \(\nu\)\(_{1}\) + \(\nu\)\(_{2}\) = 4 stretching overtones of the HF dimer, and H-atom exchange
Journal of Molecular Spectroscopy, 149 (2) :512-518
1991323.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)\(^{2}\)\(\Pi\)\(_{1/2}\) → X\(_{1}\)\(^{2}\)\(\Pi\)\(_{3/2}\) electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991322.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)\(^{2}\)\(\Pi\)\(_{1/2}\) → X\(_{1}\)\(^{2}\)\(\Pi\)\(_{3/2}\) electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991321.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)1 → X\(_{1}\)0\(^{+}\) electronic band systems of bismuth monohalides in the near infrared
Chemical Physics Letters, 179 (1-2) :95-102
1991320.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)1 → X\(_{1}\)0\(^{+}\) electronic band systems of bismuth monohalides in the near infrared
Chemical Physics Letters, 179 (1-2) :95-102
1991319.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X22Π1/2 → X12Π3/2 electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991