Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2024
4977.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators
20244976.
Gaul, Daniela
Exact and Heuristic Methods for Dial-a-Ride Problems
Dissertation
Dissertation
Bergische Universität Wuppertal
20244975.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20244974.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20244973.
Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
20244972.
Hosfeld, René; Jacob, Birgit; Schwenninger, Felix; Tucsnak, Marius
Input-to-state stability for bilinear feedback systems
SIAM Journal on Control and Optimization, 62 (3) :1369-1389
20244971.
Jamil, Hamza
Intrusive and non-intrusive uncertainty quantification methodologies for pyrolysis modeling
Fire Safety Journal, 143 :104060
2024
ISSN: 0379-71124970.
Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael; Marheineke, Nicole
Splitting Techniques for DAEs with port-Hamiltonian Applications
Preprint
20244969.
Botchev, M. A.; Knizhnerman, L. A.; Schweitzer, M.
Krylov subspace residual and restarting for certain second order differential equations
SIAM J. Sci. Comput., 46 (2) :S223-S253
20244968.
Lyu, Dongyu; Holzenkamp, Matthias; Vinod, Vivin; Holtkamp, Yannick M.; Maity, Sayan; Salazar, Carlos R.; Kleinekathöfer, Ulrich; Zaspel, Peter
Excitation Energy Transfer between Porphyrin Dyes on a Clay Surface: A study employing Multifidelity Machine Learning.
20244967.
Holzenkamp, Matthias; Lyu, Dongyu; Kleinekathöfer, Ulrich; Zaspel, Peter
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials.
20244966.
Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Linear-Quadratic optimal control for boundary controlled networks of waves
20244965.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluids, 36 (3)
2024
Herausgeber: AIP Publishing4964.
Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
20244963.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London4962.
Günther, M.; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst.
20244961.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20244960.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes.
20244959.
Kapllani, Lorenc; Teng, Long
Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete and continuous dynamical systems - B, 29 (4) :1695–1729
2024
Herausgeber: AIMS Press4958.
Ackermann, Julia; Jentzen, Arnulf; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations
arXiv:2406.10876 :64 pages
20244957.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing4956.
Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Ensuring connectedness for the Maximum Quasi-clique and Densest $k$-subgraph problems
20244955.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szasz-Mirakjan-Durrmeyer operators
20244954.
Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
20244953.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
2024