Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1991

367.

Becker, Eilhard; Benter, Thorsten; Kampf, R.; Schindler, Ralph N.; Wille, Uta
A Redetermination of the Rate Constant of the Reaction F + HNO\(_{3}\) → HF + NO\(_{3}\)
Berichte der Bunsengesellschaft für physikalische Chemie, 95 (10) :1168-1173
1991

366.

Becker, Eilhard; Benter, Thorsten; Kampf, R.; Schindler, Ralph N.; Wille, Uta
A Redetermination of the Rate Constant of the Reaction F + HNO\(_{3}\) → HF + NO\(_{3}\)
Berichte der Bunsengesellschaft für physikalische Chemie, 95 (10) :1168-1173
1991

365.

Becker, Eilhard; Benter, Thorsten; Kampf, R.; Schindler, Ralph N.; Wille, Uta
A Redetermination of the Rate Constant of the Reaction F + HNO3 → HF + NO3
Berichte der Bunsengesellschaft für physikalische Chemie, 95 (10) :1168-1173
1991

364.

Jensen, Per; Bunker, Philip R.; Karpfen, Alfred
An ab initio calculation of the nonadiabatic effect on the tunneling splitting in vibrationally excited (HF)\(_{2}\)
Journal of Molecular Spectroscopy, 148 (2) :385-390
1991

363.

Jensen, Per; Bunker, Philip R.; Karpfen, Alfred
An ab initio calculation of the nonadiabatic effect on the tunneling splitting in vibrationally excited (HF)\(_{2}\)
Journal of Molecular Spectroscopy, 148 (2) :385-390
1991

362.

Jensen, Per; Bunker, Philip R.; Karpfen, Alfred
An ab initio calculation of the nonadiabatic effect on the tunneling splitting in vibrationally excited (HF)2
Journal of Molecular Spectroscopy, 148 (2) :385-390
1991

361.

Jensen, Per; Marshall, Mark D.; Bunker, Philip R.; Karpfen, Alfred
An ab initio close-coupling calculation of the lower vibrational energies of the HCl dimer
Chemical Physics Letters, 180 (6) :594-600
1991

360.

Jensen, Per; Marshall, Mark D.; Bunker, Philip R.; Karpfen, Alfred
An ab initio close-coupling calculation of the lower vibrational energies of the HCl dimer
Chemical Physics Letters, 180 (6) :594-600
1991

359.

Jensen, Per; Marshall, Mark D.; Bunker, Philip R.; Karpfen, Alfred
An ab initio close-coupling calculation of the lower vibrational energies of the HCl dimer
Chemical Physics Letters, 180 (6) :594-600
1991

358.

Marshall, Mark D.; Jensen, Per; Bunker, Philip R.
An ab initio close-coupling calculation of the lower vibrational energies of the HF dimer
Chemical Physics Letters, 176 (3-4) :255-260
1991

357.

Marshall, Mark D.; Jensen, Per; Bunker, Philip R.
An ab initio close-coupling calculation of the lower vibrational energies of the HF dimer
Chemical Physics Letters, 176 (3-4) :255-260
1991

356.

Marshall, Mark D.; Jensen, Per; Bunker, Philip R.
An ab initio close-coupling calculation of the lower vibrational energies of the HF dimer
Chemical Physics Letters, 176 (3-4) :255-260
1991

355.

Karpfen, Alfred; Bunker, Philip R.; Jensen, Per
An ab initio study of the hydrogen chloride dimer: the potential energy surface and the characterization of the stationary points
Chemical Physics, 149 (3) :299-309
1991

354.

Karpfen, Alfred; Bunker, Philip R.; Jensen, Per
An ab initio study of the hydrogen chloride dimer: the potential energy surface and the characterization of the stationary points
Chemical Physics, 149 (3) :299-309
1991

353.

Karpfen, Alfred; Bunker, Philip R.; Jensen, Per
An ab initio study of the hydrogen chloride dimer: the potential energy surface and the characterization of the stationary points
Chemical Physics, 149 (3) :299-309
1991

352.

Bunker, Philip R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred
An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer
Journal of Molecular Spectroscopy, 146 (1) :200-219
1991

351.

Bunker, Philip R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred
An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer
Journal of Molecular Spectroscopy, 146 (1) :200-219
1991

350.

Bunker, Philip R.; Epa, V. C.; Jensen, Per; Karpfen, Alfred
An analytical ab initio potential surface and the calculated tunneling energies for the HCl dimer
Journal of Molecular Spectroscopy, 146 (1) :200-219
1991

349.

Fink, Ewald H.; Setzer, Klaus-Dieter; Wildt, J{ü}rgen; Ramsay, D. A.; Vervloet, M.
Collision-induced emission of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) → a\(^{1}\)\(\Delta\)\(_{g}\)) in the gas phase
International Journal of Quantum Chemistry, 39 (3) :287-298
1991

348.

Fink, Ewald H.; Setzer, Klaus-Dieter; Wildt, J{ü}rgen; Ramsay, D. A.; Vervloet, M.
Collision-induced emission of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) → a\(^{1}\)\(\Delta\)\(_{g}\)) in the gas phase
International Journal of Quantum Chemistry, 39 (3) :287-298
1991

347.

Fink, Ewald H.; Setzer, Klaus-Dieter; Wildt, Jürgen; Ramsay, D. A.; Vervloet, M.
Collision-induced emission of O2(b1Σg+ → a1Δg) in the gas phase
International Journal of Quantum Chemistry, 39 (3) :287-298
1991

346.

Vilesov, A. F.; Wildt, J{ü}rgen; Fink, Ewald H.
Emission of Xe: N(\(^{2}\)P) collision complexes near the N(\(^{2}\)P→\(^{2}\)D) lines
Chemical Physics, 153 (3) :531-537
1991

345.

Vilesov, A. F.; Wildt, J{ü}rgen; Fink, Ewald H.
Emission of Xe: N(\(^{2}\)P) collision complexes near the N(\(^{2}\)P→\(^{2}\)D) lines
Chemical Physics, 153 (3) :531-537
1991

344.

Vilesov, A. F.; Wildt, Jürgen; Fink, Ewald H.
Emission of Xe: N(2P) collision complexes near the N(2P→2D) lines
Chemical Physics, 153 (3) :531-537
1991

343.

Heilmann, Margareta; Müller, Manfred
Equivalence of a weighted modulus of smoothness and a modified weighted K-functional
In Nevai, P. and Pinkus, A., Editor
Herausgeber: Academic Press
1991