Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1989

252.

Tausch, Michael W.
Kritische Überlegungen zur Teilchenzahl als eigenständige Größe im Größenkalkül
Der mathematische und naturwissenschaftliche Unterricht (MNU), 42 :438
1989

251.

Tausch, Michael W.; Wachtendonk, M.
Lehrerband mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF-FORMEL-UMWELT, BAND 1: CHEMISCHE GLEICHGEWICHTE - ELEKTROCHEMIE, Lehrbuch für die S II (Grund- und Leistungskurse), 172 Seiten
Herausgeber: C. C. Buchner, Bamberg
1989

250.

Heilmann, Margareta; Müller, Manfred
Weighted simultaneous L_p-approximation by the method of Baskakov-Durrmeyer operators
Approximation Theory VI, Proc. 6th Int. Symp., College Station/TX USA1989Band 1, Seite 331-332
1989

249.

Bauer, W.; Engelhardt, B.; Wiesen, Peter; Becker, Karl Heinz
Lifetime measurements of GeH and CH in the A\(^{2}\)\(\Delta\), v'=0 state by laser-induced fluorescence
Chemical Physics Letters, 158 (3-4) :321-324
1989

248.

Bauer, W.; Engelhardt, B.; Wiesen, Peter; Becker, Karl Heinz
Lifetime measurements of GeH and CH in the A2Δ, v'=0 state by laser-induced fluorescence
Chemical Physics Letters, 158 (3-4) :321-324
1989

247.

Becker, Karl Heinz; Wiesen, Peter
Measurements on the CH*(A\(^{2}\)\(\Delta\) → X\(^{2}\)\(\Pi\)) Chemiluminescence in the C\(_{2}\)H\(_{2}\) + O Flame and Quenching Rate Constants for Different Reactants at 297 K
Zeitschrift für Physikalische Chemie, 161 (Part_1_2) :131-144
1989

246.

Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989

245.

Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989
1988

244.

Weinmüller, E.; Winkler, E.
Path-following Algorithm for Singular Boundary Value Problems
ZAMM, 68 :527--537
1988

243.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

242.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(3P) atoms in halogenomethane + H flame systems and measurements of C(3P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

241.

Jensen, Per
Calculation of rotation-vibration linestrengths for triatomic molecules using a variational approach
Journal of Molecular Spectroscopy, 132 (2) :429-457
1988

240.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X~3B1 methylene (CH2) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

239.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

238.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

237.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a1Δ(a2)-X3Σ-(X21) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

236.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

235.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

234.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

233.

Jensen, Per
Calculation of rotation-vibration linestrengths for triatomic molecules using a variational approach
Journal of Molecular Spectroscopy, 132 (2) :429-457
1988

232.

Heilmann, Margareta
Commutativity of operators from Baskakov-Durrmeyer type
Constructive Theory of Functions - Proceedings of the International Conference, Varna, Bulgaria, 1987, Seite 197-206
1988

231.

Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O2(b1Σg+, v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

230.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

229.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

228.

Czech, C. M.; Kling, H.-W.; Hartkamp, H.
Kontinuierliche Derivatisierung von schwerflüchtigen Wasserinhaltsstoffen durch Periodat-Oxidation in Verbindung mit dem Contistrip-Verfahren
Fresenius' Journal of Analytical Chemistry, 332 (4) :341--344
1988

Weitere Infos über #UniWuppertal: