Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1986

143.

Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986

142.

Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986

141.

Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X~3B1 methylene (CH2) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986

140.

Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.

139.

Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.

138.

Vojtík, Jan; Spirko, Vladimír; Jensen, Per
Vibrational energies of H3+ and Li3+ based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.
1985

137.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985

136.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985

135.

Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
A~2A' → X~2A" emission spectrum of the HS2 radical
Chemical Physics Letters, 113 (1) :1-7
1985

134.

Tausch, Michael W.
Aktivierungsenergie - was ist das?
Praxis der Naturwissenschaften (Chemie), 34 :33
1985

133.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985

132.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985

131.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH2 in the a~3B1 state
Chemical Physics Letters, 118 (1) :60-63
1985

130.

Kling, H.-W.; Hartkamp, H.; Buchholz, N.
Matrixunabhängige kontinuierliche Dampfraum-Gas-Chromatographie
Fresenius' Journal of Analytical Chemistry, 320 (4) :341--346
1985

129.

Winkler, R.
Path-following for two-point boundary value problems
, Seminarbericht 78 der Sektion MathematikBand78
Humboldt-Universität zu Berlin
1985

128.

Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985

127.

Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985

126.

Spirko, Vladimír; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H3+
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985

125.

Lamour, R.; Hanke, M.; Winkler, R.
The program system ‘RWA’ (version 2) for the solution of TPBVP - fundamentals and algorithms
, Seminarbericht 67 der Sektion MathematikBand67
Humboldt-Universität zu Berlin
1985
1984

124.

Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada

123.

Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada

122.

Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the ν2 and ν5 absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada

121.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984

120.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984

119.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984