Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1983

92.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, Jürgen
b1Σ+ Emissions from group V-VII diatomic molecules: b0+ → X10+ emission of Pl
Chemical Physics Letters, 102 (5) :404-408
1983

91.

Tausch, Michael W.
Chemische Solarenergiespeicherung in Valenzisomeren
Praxis der Naturwissenschaften (Chemie), 32 :79
1983

90.

Tausch, Michael W.
DER UV-TAUCHLAMPENREAKTOR FÜR PHOTOCHEMISCHE SCHULVERSUCHE, Monographie mit Versuchsanleitungen und didaktischen Hinweisen
Herausgeber: SCS Jürgens\&Co KG, Bremen
1983

89.

Jensen, Per
HCNO as a semirigid bender: The degenerate \(\nu\)\(_{4}\) state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

88.

Jensen, Per
HCNO as a semirigid bender: The degenerate \(\nu\)\(_{4}\) state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

87.

Jensen, Per
HCNO as a semirigid bender: The degenerate ν4 state
Journal of Molecular Spectroscopy, 101 (2) :422-439
1983

86.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO\(_{2}\)(A\(^{2}\)A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

85.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO\(_{2}\)(A\(^{2}\)A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

84.

Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Winter, R.; Zabel, Friedhelm
Mechanisms of perhydroxyl HO2(A2A') excitation in various chemical systems
The Journal of Physical Chemistry, 87 (20) :3943-3948
1983

83.

Wildt, J{ü}rgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b\(^{1}\)\(\Sigma\)\(^{+}\),\(\nu\)'=0)
Chemical Physics, 80 (1-2) :167-175
1983

82.

Wildt, J{ü}rgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b\(^{1}\)\(\Sigma\)\(^{+}\),\(\nu\)'=0)
Chemical Physics, 80 (1-2) :167-175
1983

81.

Wildt, Jürgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b1Σ+,ν'=0)
Chemical Physics, 80 (1-2) :167-175
1983

80.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b\(^{1}\)\(\Sigma\) states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

79.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b\(^{1}\)\(\Sigma\) states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

78.

Wildt, Jürgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b1Σ states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

77.

[german] Tausch, Michael W.
Strukturaufklärung in der organischen Chemie - Ermittlung der Strukturformeln von Maleinsäure und Fumarsäure
Praxis der Naturwissenschaften (Chemie), 32 :44
1983

76.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The \(\nu\)\(_{3}\) vibration of electronically excited HO\(_{2}\)(A\(^{2}\)A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

75.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The \(\nu\)\(_{3}\) vibration of electronically excited HO\(_{2}\)(A\(^{2}\)A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

74.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

73.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

72.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

71.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the \(\nu\)\(_{4}\) fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

70.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the \(\nu\)\(_{4}\) fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

69.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the ν4 fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

68.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983