Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2008

1818.

Blanco, María B.; Bejan, Iustinian; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.
Kinetics of the reactions of chlorine atoms with selected fluoroacetates at atmospheric pressure and 298 K
Chemical Physics Letters, 453 (1-3) :18-23
2008

1817.

Tausch, Michael W.
Kompetenzen und Kontexte - pdn-ChiS erweitert Service
Praxis der Naturwissenschaften - Chemie in der Schule, 57 (4) :4
2008

1816.


Lange bekannt – aber erfolgreich: die Pinakolumlagerung
Nachrichten aus der Chemie, 56 (12) :1228–1231
2008
ISSN: 1868-0054

1815.

Ehrhardt, M.; Fuhrmann, J.; Holzbecher, E.; Linke, A.
Mathematical Modeling of Channel - Porous Layer Interfaces in {PEM} Fuel Cells
Proceedings of FDFC2008 - Fundamentals and Developments of Fuel Cell Conference 2008, Nancy, France, December 10-12, 2008
2008

1814.

Ehrhardt, Matthias
Mathematical modeling of channel-porous layer interfaces in PEM fuel cells
Proceedings of FDFC2008 - Fundamentals and Developments of Fuel Cell Conference 2008
2008

1813.

Ehrhardt, Matthias
Mathematical modeling of channel-porous layer interfaces in PEM fuel cells
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik
2008

1812.

Voss, Thomas; Verhoeven, Arie; Bechtold, Tamara; Maten, Jan
Model Order Reduction for Nonlinear Differential Algebraic Equations in Circuit Simulation
In L. L. Bonilla and M. Moscoso and G. Platero and J. M. Vega, Editor, Progress in Industrial Mathematics at {ECMI} 2006 Band 12 aus Mathematics in Industry
Seite 518--523
Herausgeber: Springer Berlin Heidelberg
2008
518--523

1811.

Günther, Marco; Wegener, Raimund; Olawsky, Ferdinand
Modeling and simulation of non-woven processes
Progress in Industrial Mathematics at ECMI 2006, Seite 691--696
Springer Berlin Heidelberg
2008

1810.

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K.
Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
Nature nanotechnology, 3 (4) :210--215
2008

1809.

Izumi, K.; Cohen, E. A.; Setzer, Klaus-Dieter; Fink, Ewald H.; Kawaguchi, K.
Near-infrared Fourier-transform and millimeterwave spectra of the BiS radical
Journal of Molecular Spectroscopy, 252 (2) :198-204
2008
Herausgeber: Academic Press

1808.

Izumi, K.; Cohen, E. A.; Setzer, Klaus-Dieter; Fink, Ewald H.; Kawaguchi, K.
Near-infrared Fourier-transform and millimeterwave spectra of the BiS radical
Journal of Molecular Spectroscopy, 252 (2) :198-204
2008
Herausgeber: Academic Press

1807.

Izumi, K.; Cohen, E. A.; Setzer, Klaus-Dieter; Fink, Ewald H.; Kawaguchi, K.
Near-infrared Fourier-transform and millimeterwave spectra of the BiS radical
Journal of Molecular Spectroscopy, 252 (2) :198-204
2008
Herausgeber: Academic Press

1806.

Bolten, Matthias; Sutmann, G.
NFFT-based extension of a particle simulation method using multigrid
PAMM, 7 (1) :2140005-2140006
Dezember 2008

1805.

Bolten, M.; Sutmann, G.
NFFT-based extension of a particle simulation method using multigrid
PAMM, 7 (1) :2140005-2140006
Dezember 2008

1804.

Bolten, M.; Sutmann, G.
NFFT-based extension of a particle simulation method using multigrid
PAMM, 7 (1) :2140005--2140006
Dezember 2008

1803.

Bechtold, T.; Striebel, M.; Mohaghegh, K.; Maten, E. J. W.
Nonlinear Model Order Reduction in Nanoelectronics: Combination of {POD} and {TPWL}
{PAMM}, 8 (1) :10057--10060
Dezember 2008
Herausgeber: Wiley

1802.

Ehrhardt, Matthias
Nonlinear models in mathematical finance: new research trends in option pricing
(No Title)
2008
Herausgeber: Nova Science Publishers, Inc., Hauppauge, NY 11788

ISBN: 978-1-60456-931-5

1801.


Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing
In Ehrhardt, Matthias, Editor
Herausgeber: Nova Science Publishers
2008

ISBN: 978-1-60456-931-5

1800.

Ehrhardt, M.
Nonlinear Models in Option Pricing - an Introduction
In M. Ehrhardt, Editor, Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing, Seite 1--19
In M. Ehrhardt, Editor
Herausgeber: Nova Science, Hauppauge, NY
2008

1799.

Ehrhardt, Matthias
Nonlinear models in option pricing: An introduction
In Ehrhardt, Matthias, Editor
Seite 1–19
Herausgeber: Nova Science Publishers
2008
1–19

1798.

Ehrhardt, Matthias
Nonlinear models in option pricing: an introduction
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik
2008

1797.

Ehrhardt, Matthias
Numerical simulation of quantum waveguides
Herausgeber: Nova Science, Hauppauge, NY
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik
VLSI and Computer Architecture
2008

1796.

Ehrhardt, Matthias
Numerical simulation of waves in periodic structures
Dokument Nummer: 5
Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik
2008

1795.

Ankudinova, J.; Ehrhardt, M.
On the numerical solution of nonlinear {Black-Scholes} equations
Comput. Math. Appl., 56 (3) :799--812
2008

1794.

Ehrhardt, Matthias
On the numerical solution of nonlinear Black--Scholes equations
Computers & Mathematics with Applications, 56 (3) :799--812
2008
Herausgeber: Pergamon