Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Former and ongoing projects

Cooperations

Open subjects for theses

  • Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

Publications



2024

4927.

Vinod, Vivin; Kleinekathöfer, Ulrich; Zaspel, Peter
Optimized multifidelity machine learning for quantum chemistry
Mach. Learn.: Sci. Technol., 5 (1) :015054
2024

4926.

Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative {H}amiltonian flows
Engineering Optimization
2024

4925.

Frommer, Andreas; Rinelli, Michele; Schweitzer, Marcel
Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices
Math. Comp.
2024

4924.

Bauß, Julius; Stiglmayr, Michael
Adapting Branching and Queuing for Multi-objective Branch and Bound
Operations Research Proceedings 2023
Herausgeber: Springer
2024

4923.

Gaul, Daniela; Klamroth, Kathrin; Pfeiffer, Christian; Stiglmayr, Michael; Schulz, Arne
A Tight Formulation for the Dial-a-Ride Problem
European Journal of Operational Research
September 2024
Herausgeber: Elsevier BV
ISSN: 0377-2217

4922.

Bolten, Matthias; Kilmer, Misha E.; MacLachlan, Scott
Multigrid preconditioning for regularized least-squares problems
SIAM J. Sci. Comput., 46 (5) :s271—s295
2024
ISSN: 1064-8275

4921.

Schultes, Johanna
Multiobjective optimization of shapes using scalarization techniques
Dissertation
Dissertation
Bergische Universität Wuppertal
2024

4920.

Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Herausgeber: Schloss Dagstuhl – Leibniz-Zentrum für Informatik

4919.

Bolten, M.; Doganay, O. T.; Gottschalk, H.; Klamroth, K.
Non-convex shape optimization by dissipative Hamiltonian flows
Eng. Optim. :1—20
2024

4918.

Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin
A simple, efficient and versatile objective space algorithm for multiobjective integer programming
Mathematical Methods of Operations Research
2024

4917.

Hoang, Manh Tuan; Ehrhardt, Matthias
A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator--prey model
Journal of Computational and Applied Mathematics :115752
2024
Herausgeber: Elsevier

4916.

Bauß, Julius
On improvements of multi-objective branch and bound
Dissertation
Dissertation
Bergische Universität Wuppertal
2024

4915.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
On some Cauchy problems and positive linear operators
2024

4914.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
2024

4913.

Lorenz, Jan; Zwerschke, Tom; Guenther, Michael; Schaefers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
2024

4912.

Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS
2023

4911.

Haussmann, N.; Stroka, S.; Mazaheri, S.; Clemens, M.
Using Point Clouds for Material Properties Smoothing in Low-Frequency Numerical Dosimetry Simulations
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 2023

4910.

Kähne, B.; Clemens, M.
A GPU Accelerated Semi-Implicit Method for Large-Scale Nonlinear Eddy-Current Problems Using Adaptive Time Step Control
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 2023

4909.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Voronovskaja formula for Aldaz–Kounchev–Render operators: uniform convergence
Analysis and Mathematical Physics, 14 (1)
Dezember 2023
ISSN: 1664-235X

4908.

Gernandt, Hannes; Hinsen, Dorothea; Cherifi, Karim
The difference between port-Hamiltonian, passive and positive real descriptor systems
Mathematics of Control, Signals, and Systems
Dezember 2023

4907.

Stroka, S.; Kasolis, F.; Haussmann, N.; Clemens, M.
Efficient Low-Frequency Human Exposure Assessment with the Maximum Entropy Snapshot Sampling
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, Korea
November 2023

4906.

Xuan, Mingjun; Fan, Jilin; Khiêm, Vu Ngoc; Zou, Miancheng; Brenske, Kai-Oliver; Mourran, Ahmed; Vinokur, Rostislav; Zheng, Lifei; Itskov, Mikhail; Göstl, Robert; Herrmann, Andreas
Polymer Mechanochemistry in Microbubbles
Advanced Materials, 35 (47) :2305130
November 2023
ISSN: 1521-4095

4905.

Stroka, S.; Haussmann, N.; Clemens, M.
Efficient Assessment of High-Resolution Low-Frequency Magnetic Field Exposure Scenarios Using Reduced Order Models
15th Scientific Computing in Electrical Engineering (SCEE 2024)
Darmstadt, Germany
November 2023

4904.

[german] Grandrath, Rebecca
Videoschnitt für Einsteiger:innen
Unterricht Biologie - Das Schülerarbeitsheft, 51 :32-36
November 2023

4903.

[german] Kiesling, Elisabeth; Kremer, Richard; Pereira Vaz, Nuno; Venzlaff, Julian; Bohrmann-Linde, Claudia
Wege aus der Klimakrise – ein BNE-Schülerlaborangebot mit mehrdimensionalem Zugang
MNU Journal, 76 (06/2023) :464 - 471
November 2023
ISSN: 0025-5866

Weitere Infos über #UniWuppertal: