Semiconductor
Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.
Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.
Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:
- Thermal effects in semiconductor devices
- Noise in semiconductor devices (SDEs)
- Quantum Effects in semiconductor devices
- Electro-thermal coupling of optoelectronic semiconductor devices with electric circuits
- Efficient Co-Simulation of circuit/semiconductor problems (Dynamic Iteration schemes)
Former and ongoing projects
Cooperations
- Vittorio Romano, Università degli studi di Catania, Italy
- Giuseppe Ali, Universitá della Calabria, Italy
- Ansgar Jüngel, TU Vienna, Austria
- Pina Milisic, University of Zagreb, Croatia
Open subjects for theses
- Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)
Publications
- 2024
5367.
Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin
A simple, efficient and versatile objective space algorithm for multiobjective integer programming
Mathematical Methods of Operations Research, 100 :351—384
20245366.
Vinod, Vivin; Zaspel, Peter
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Machine Learning: Science and Technology, 5 (4) :045005
20245365.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic expansions for variants of the gamma and Post–Widder operators preserving 1 and x^j
Mathematical Methods in the Applied Sciences, 47 (18) :13718-13733
20245364.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szász-Mirakjan-Durrmeyer operators
20245363.
Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
20245362.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20245361.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20245360.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
20245359.
Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods
Journal of Open Source Software, 9 (98) :6611
2024
Herausgeber: The Open Journal5358.
Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
20245357.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon5356.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-12215355.
Finster, Rebecca; Grogorick, Linda; Robra-Bissantz, Susanne
ChatGPT erzähl mir eine Geschichte: Die Verwandlung von Lernwelten durch KI-gestützte Erzählungen
DeLFI Fachtagung Bildungstechnologien
Fulda
2024ISBN: 978-3-88579-255-0
5354.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
20245353.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szász-Mirakjan-Durrmeyer operators
Advances in Operator Theory, 10 (1) :14
20245352.
Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
20245351.
Klamroth, Kathrin; Stiglmayr, Michael; Totzeck, Claudia
Consensus-Based Optimization for Multi-Objective Problems: A Multi-Swarm Approach
Journal of Global Optimization
20245350.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5349.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5348.
Günther, M.; Jacob, B.; Totzeck, C.
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst., 36 :957–977
20245347.
Günther, M.; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst.
20245346.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245345.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245344.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes.
20245343.
Kapllani, Lorenc; Teng, Long
Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete and continuous dynamical systems - B, 29 (4) :1695–1729
2024
Herausgeber: AIMS Press