Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Former and ongoing projects

Cooperations

Open subjects for theses

  • Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

Publications



5052.

Al{\i}, G; Bartel, A; Günther, M
Electrical RLC networks and diodes

5051.

Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :587

5050.

Ehrhardt, Matthias; Zheng, Chunxiong
für Angewandte Analysis und Stochastik

5049.

Ehrhardt, Matthias; Zheng, Chunxiong
für Angewandte Analysis und Stochastik

5048.

Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations

5047.

Hendricks, C; Ehrhardt, M; Günther, M
High order tensor product interpolation in the Combination Technique
preprint, 14 :25

5046.

Hendricks, C; Ehrhardt, M; Günther, M
High order tensor product interpolation in the Combination Technique
preprint, 14 :25
2024

5045.

Kapllani, Lorenc; Teng, Long
{A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations}
2024

5044.

[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Diekmann, Charlotte; Schrader, Claudia
Virtual Reality für den Chemieunterricht
Nachrichten aus der Chemie, 72 (6) :15-22
2024

5043.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 388
2024

5042.

Arslan, Bahar; Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
Electron. J. Linear Algebra, 40 :28-47
2024

5041.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
Preprint
2024

5040.

Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Constructing Optimal Star Discrepancy Sets
2024

5039.

Jacob, Birgit; Glück, Jochen; Meyer, Annika; Wyss, Christian; Zwart, Hans
Stability via closure relations with applications to dissipative and port-Hamiltonian systems
J. Evol. Equ., 24 :Paper No. 62
2024

5038.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
TechRxiv
2024
Herausgeber: IEEE

5037.

Günther, M.; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
Band 43
Herausgeber: Springer, Cham.
van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. Edition
2024

5036.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 167–174
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
2024

5035.

Ghasemzadeh, Mohammadamin; Amirfazli, Alidad
Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator
Fluids, 9 (1)
2024
ISSN: 2311-5521

5034.

Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
To appear in International Journal of Uncertainty Quantification
2024
Herausgeber: Begell

5033.

Schäfers, Kevin; Peardon, Michael; Günther, Michael
A modified Cayley transform for SU (3)
Preprint
2024

5032.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics
2024

5031.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics, 101 (9-10) :1094–1112
2024
Herausgeber: Taylor & Francis

5030.

Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The collective dynamics of a stochastic port-Hamiltonian self-driven agent model in one dimension
ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2) :515–544
2024
Herausgeber: EDP Sciences

5029.

Rohde, Martin; Burgmann, Sebastian; Janoske, Uwe
The impact of a two-dimensional vibration excitation on the critical incident flow velocity of a sessile droplet
International Journal of Multiphase Flow, 171 :104663
2024
Herausgeber: Pergamon

5028.

Reiter, Kendra; Schmidt, Marie; Stiglmayr, Michael
The Line-Based Dial-a-Ride Problem
In Bouman, Paul C. and Kontogiannis, Spyros C., Editor, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)Band123ausOpen Access Series in Informatics (OASIcs), Seite 14:1—14:20
24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs)
In Bouman, Paul C. and Kontogiannis, Spyros C., Editor
Herausgeber: Schloss Dagstuhl — Leibniz-Zentrum für Informatik, Dagstuhl, Germany
2024

Weitere Infos über #UniWuppertal: