Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Former and ongoing projects

Cooperations

Open subjects for theses

  • Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

Publications



1988

218.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

217.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

216.

Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O2(b1Σg+, v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

215.

Heilmann, Margareta
Lp-saturation of some modified Bernstein operators
Journal of Approximation Theory, 54 (3) :260-273
1988
ISSN: 0021-9045

214.

Weinmüller, E.; Winkler, E.
Path-following Algorithm for Singular Boundary Value Problems
ZAMM, 68 :527--537
1988

213.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

212.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

211.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(3P) atoms in halogenomethane + H flame systems and measurements of C(3P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

210.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

209.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

208.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a1Δ(a2)-X3Σ-(X21) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

207.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

206.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

205.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X~3B1 methylene (CH2) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988
1987

204.

Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

203.

Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

202.

Spirko, Vladimír; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H3+: Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

201.

McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987

200.

McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987

199.

Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987

198.

Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987

197.

Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH2+ using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987

196.

McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of ν1 and ν3 for triplet methylene (X~3B1 CH2) and the determination of the vibrationless singlet-triplet splitting Te (a~1A1)
The Journal of Chemical Physics, 87 (4) :2166-2169
1987

195.

Heilmann, Margareta
Approximation auf [0, ∞) durch das Verfahren der Operatoren vom Baskakov-Durrmeyer Typ
Universität Dortmund
1987

194.

Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC\(^{+}\)
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987