Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Former and ongoing projects

Cooperations

Open subjects for theses

  • Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

Publications



1993

417.

Maten, E. J. W.; Huijben, A. J. M.
Vector extrapolation applied to a time cyclic heat problem
In Lewis, R. W., Editor, Numerical methods in thermal problemsBand8(2), Seite 983-994
In Lewis, R. W., Editor
Herausgeber: Pineridge Press Lmt, Swansea, UK
1993

416.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH\(_{2}\) and NH\(_{2}\)\(^{+}\)
The Journal of Chemical Physics, 99 (12) :9709-9719
1993

415.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH\(_{2}\) and NH\(_{2}\)\(^{+}\)
The Journal of Chemical Physics, 99 (12) :9709-9719
1993

414.

Barclay, V. J.; Hamilton, I. P.; Jensen, Per
Vibrational levels for the lowest-lying triplet and singlet states of CH2 and NH2+
The Journal of Chemical Physics, 99 (12) :9709-9719
1993
1992

413.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

412.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

411.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC+ molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

410.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

409.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

408.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

407.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

406.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

405.

Jensen, Per; Rohlfing, Celeste Michael; Almlöf, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C3(X~ 1Σg+)
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

404.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

403.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

402.

Wildt, Jürgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O2(a 1Δg → X 3Σg-) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

401.

Heilmann, Margareta
Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren
Universität Dortmund
1992

400.

Tausch, Michael W.
Erzeugung und Desaktivierung von angeregten Zuständen
Mitteilungsblatt der FG Chemieunterricht der GDCh (17) :253
1992

399.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N\(_{2}\)O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

398.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N\(_{2}\)O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

397.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Investigation of N2O formation in the NCO+NO reaction by Fourier-transform infrared spectroscopy
Chemical Physics Letters, 198 (3-4) :424-428
1992

396.

Becker, Karl Heinz; K{ö}nig, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C\(_{2}\)O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992

395.

Becker, Karl Heinz; K{ö}nig, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C\(_{2}\)O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992

394.

Becker, Karl Heinz; König, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C2O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992

393.

Tausch, Michael W.; Wachtendonk, M.; Deissenberger, H.; Porth, H.-R.; Weißenhorn, R.G.
Lehrerband mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF-FORMEL-UMWELT, BAND 2: ORGANISCHE CHEMIE - ANGEWANDTE CHEMIE, Lehrbuch für die S II, (Grund- und Leistungskurse)
Herausgeber: C. C. Buchner, Bamberg
1992