Semiconductor
Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.
Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.
Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:
- Thermal effects in semiconductor devices
- Noise in semiconductor devices (SDEs)
- Quantum Effects in semiconductor devices
- Electro-thermal coupling of optoelectronic semiconductor devices with electric circuits
- Efficient Co-Simulation of circuit/semiconductor problems (Dynamic Iteration schemes)
Former and ongoing projects
Cooperations
- Vittorio Romano, Università degli studi di Catania, Italy
- Giuseppe Ali, Universitá della Calabria, Italy
- Ansgar Jüngel, TU Vienna, Austria
- Pina Milisic, University of Zagreb, Croatia
Open subjects for theses
- Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)
Publications
- 1989
268.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
Near-infrared emission bands of TeH and TeD
Journal of Molecular Spectroscopy, 138 (1) :19-28
1989267.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
Near-infrared emission bands of TeH and TeD
Journal of Molecular Spectroscopy, 138 (1) :19-28
1989266.
Heilmann, Margareta
On simultaneous approximation by optimal algebraic polynomials
Results in Mathematics, 16 (1-2) :77-81
1989265.
Heilmann, Margareta; Müller, Manfred
On simultaneous approximation by the method of Baskakov-Durrmeyer operators
Numerical Functional Analysis and Optimization, 10 (1-2) :127-138
1989264.
[german] Tausch, Michael W.; Wöhrle, D.
Photokatalyse
Praxis der Naturwissenschaften (Chemie), 38 :37
1989263.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X\(^{2}\)\(\Pi\)) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989262.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X\(^{2}\)\(\Pi\)) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989261.
Becker, Karl Heinz; Engelhardt, B.; Wiesen, Peter; Bayes, Kyle D.
Rate constants for CH(X2Π) reactions at low total pressures
Chemical Physics Letters, 154 (4) :342-348
1989260.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989259.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989258.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0+ → X10+ system of 130Te80Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989257.
Tausch, Michael W.; Wachtendonk, M.
STOFF-FORMEL-UMWELT, BAND 1: CHEMISCHE GLEICHGEWICHTE - ELEKTROCHEMIE, Lehrbuch für die S II (Grund- und Leistungskurse), 172 Seiten
Herausgeber: C. C. Buchner, Bamberg
1989256.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989255.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989254.
Wildt, Jürgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O2(a1Δg)
Chemical Physics, 139 (2-3) :401-407
1989253.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.252.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.251.
Jensen, Per
The potential energy surface for the C3 molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.250.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989249.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989248.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989247.
Schönfeld, J; Loennecken, I; Gückel, C
Unilateral pulsating tinnitus: paraganglioma of the glomus jugulare with predominantly vascular extension
Medizinische Klinik (Munich, Germany: 1983), 84 (9) :445--449
1989246.
Heilmann, Margareta; Müller, Manfred
Weighted simultaneous L_p-approximation by the method of Baskakov-Durrmeyer operators
Approximation Theory VI, Proc. 6th Int. Symp., College Station/TX USA1989Band 1, Seite 331-332
1989- 1988
245.
Jensen, Per; Kraemer, Wolfgang P.
A comparison of perturbative and variational rotation-vibration energies calculated for HOC\(^{+}\) and C\(_{3}\) using the nonrigid bender and MORBID Hamiltonians
Journal of Molecular Spectroscopy, 129 (1) :172-185
1988244.
Jensen, Per; Kraemer, Wolfgang P.
A comparison of perturbative and variational rotation-vibration energies calculated for HOC\(^{+}\) and C\(_{3}\) using the nonrigid bender and MORBID Hamiltonians
Journal of Molecular Spectroscopy, 129 (1) :172-185
1988