Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



2025

5467.

Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators and their application to lattice QCD simulations
PoS, LATTICE2024 :025
2025

5466.

Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators and their application to lattice QCD simulations
PoS, LATTICE2024 :025
2025

5465.

Krhac, Kaja; Schuller, Frederic P.; Stramigioli, Stefano
Hybrid Schrödinger-Liouville and projective dynamics
2025

5464.

Shaju, K.; Laepple, T.; Hirsch, N.; Zaspel, P.
Ice borehole thermometry: Sensor placement using greedy optimal sampling
EGUsphere, 2025 :1—25
2025

5463.

Vinod, Vivin; Zaspel, Peter
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
J. Chem. Theory Comput., 21 (6) :3077-3091
2025

5462.

Rajkovic, Michelle; Benter, Thorsten; Wissdorf, Walter
Investigation of Surface-Induced Dissociation Processes via Molecular Dynamics Simulations of Wall Collisions of Large Droplets Produced by Electrospray Ionization
Journal of the American Society for Mass Spectrometry, 36 (4) :760—770
April 2025
ISSN: 1044-0305, 1879-1123

5461.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Kernels for composition of positive linear operators
2025

5460.

[german] Grandrath, Rebecca; Orhan, Nalan; Bohrmann-Linde, Claudia
Konzeption einer Projektwoche zu den Themen Food Waste und Food Loss für die gymnasiale Oberstufe
In Andreas Keil, Annika Hanau und Julian Dietze (Hg.): BNE in der Lehrkräftebildung. Erkenntnisse aus Forschung und Praxis., Editor
Page 315-325
Publisher: Waxmann
May 2025
315-325

5459.

Khosrawi-Rad, Bijan; Keller, Paul; Grogorick, Linda; Benner, Dennis; Janson, Andreas; Robra-Bissantz, Susanne
Let's Play with AI! A 2x2 Experiment on Collaborative vs. Competitive Game Elements for Pedagogical Conversational Agents
Pre-ICIS SIG Services Workshop on Synergizing Service Ecosystems with AI
Bangkok, Thailand
2025

5458.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Motivieren mit (Teil-)Aufgaben zur Erklärvideoproduktion im Chemieunterricht
In Johannes Huwer, Timm Wilke, Amitabh Banerji, Editor, Volume Progress in Digitalisation in Chemistry Education 2024. Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie
Page 37-42
Publisher: Waxmann-Verlag, Münster New York
2025
37-42

ISBN: 978-3-8188-0042-0

5457.

Finster, Rebecca; Grogorick, Linda; Robra-Bissantz, Susanne
Navigation im Cyberraum: Die NIS2-Umsetzung in der öffentlichen Verwaltung - mit KOMPASS und SEXTANT
Fachtagung Rechts- und Verwaltungsinformatik (RVI)
Hamburg
2025

5456.

Schweitzer, Marcel
Near instance optimality of the Lanczos method for Stieltjes and related matrix functions
SIAM J. Matrix Anal. Appl., 46 :1846-1865
2025

5455.

Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative Hamiltonian flows
Engineering Optimization, 57 :384--403
2025

5454.

Beck, Christian; Jentzen, Arnulf; Kleinberg, Konrad; Kruse, Thomas
Nonlinear Monte Carlo Methods with Polynomial Runtime for Bellman Equations of Discrete Time High-Dimensional Stochastic Optimal Control Problems
Appl. Math. Optim., 91 (1) :26
2025

5453.

Könen, David; Stiglmayr, Michael
On Supportedness in Multi‐Objective Integer Linear Programming
Journal of Multi-Criteria Decision Analysis, 32 (3)
November 2025
Publisher: Wiley
ISSN: 1099-1360

5452.

Figueira, José Rui; Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff Santos, Julia
On the Computational Complexity of Multi-Objective Ordinal Unconstrained Combinatorial Optimization
Operations Research Letters :107302
2025

5451.

Löhken, Lara; Stiglmayr, Michael
On the multiobjective cable-trench problem
Journal of Combinatorial Optimization, 49 (55)
2025

5450.

Lorenz, Jan; Zwerschke, Tom; Günther, Michael; Schäfers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
Applied Mathematics Letters, 160 :109309
2025
Publisher: Elsevier

5449.

Lorenz, Jan; Zwerschke, Tom; Günther, Michael; Schäfers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
Applied Mathematics Letters, 160 :109309
2025
Publisher: Elsevier

5448.

Könen, David; Stiglmayr, Michael
Output-sensitive Complexity of Multi-Objective Integer Network Flow Problems
Combinatorial Optimization
2025

5447.

Sinani, Mario; Wynn, Andrew; Palacios, Rafael
Physics-Informed Data-Driven Modelling of Nonlinear Aerodynamic Forces of the Pazy Wing
AIAA SciTech Forum, 6-10 January
01 2025

5446.

Vinod, Vivin; Lyu, Dongyu; Ruth, Marcel; R. Schreiner, Peter; Kleinekathöfer, Ulrich; Zaspel, Peter
Predicting Molecular Energies of Small Organic Molecules With Multi-Fidelity Methods
J. Comp. Chem., 46 (6) :e70056
2025

5445.

[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Schrader, Claudia
Produktion eigener VR-Lernsettings im Projekt FoPro-VR. Ein interdisziplinärer Lehransatz für die Lehramtsausbildung
In Mrohs, Lorenz; Franz, Julia; Herrmann, Dominik; Lindner, Konstantin; Staake, Thorsten, Editor, Digitales Lehren und Lernen an der Hochschule. Strategien - Bedingungen - Umsetzung
Page 191-204
Publisher: transcript, Bielefeld
2025
191-204

ISBN: 9783839471203

5444.

Khosrawi-Rad, Bijan; Keller, Paul; Benner, Dennis; Grogorick, Linda; Borchers, Arne; Janson, Andreas; Leimeister, Jan Marco; Robra-Bissantz, Susanne
Promoting Students’ Motivation in Language Education with Gamified Pedagogical Conversational Agents
Computers & Education, 238 :1–24
2025

5443.

Vinod, Vivin; Zaspel, Peter
QeMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules
Sci. Data, 12 (1) :202
2025
Publisher: Nature Publishing Group
ISSN: 2052-4463