Applied and Computational Mathematics (ACM)

Publications



2022
M. Ehrhardt and M. Günther, "A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations", Physics of Fluids, vol. 34, no. 2, pp. 026604, 2022. AIP Publishing.
F. Klass, A. Gabbana and A. Bartel, "A non-reflecting boundary condition for multispeed lattice Boltzmann methods" in Progress in Industrial Mathematics at ECMI 2021, Ehrhardt, Matthias and Günther, Michael, Eds. Springer Cham, 2022, pp. 447–453.
J. Ackermann, T. Kruse and L. Overbeck, "Inhomogeneous affine Volterra processes", Stochastic Processes and their Applications, vol. 150, pp. 250–279, 2022. North-Holland.
M. Ehrhardt, "A physics-informed neural network to model COVID-19 infection and hospitalization scenarios", Advances in continuous and discrete models, vol. 2022, no. 1, pp. 1–27, 2022. Springer Science and Business Media Deutschland GmbH.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A port-Hamiltonian formulation of coupled heat transfer", Mathematical and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 78–94, 2022. Taylor & Francis.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A two-dimensional port-Hamiltonian model for coupled heat transfer", Mathematics, vol. 10, no. 24, pp. 4635, 2022. MDPI.
M. Ehrhardt, "An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions", Preprint IMACM, 2022. Bergische Universität Wuppertal.
S. Treibert, H. Brunner and M. Ehrhardt, "A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics", Mathematical Biosciences and Engineering, vol. 19, no. 2, pp. 1213–1238, 2022. AIMS Press.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "Discrete port-Hamiltonian coupled heat transfer" in Progress in Industrial Mathematics at ECMI 2021, Ehrhardt, Matthias and Günther, Michael, Eds. Springer Cham, 2022, pp. 439–445.
J. Kienitz, G. Lee, N. Nowaczyk and N. Geng, "Dynamically controlled kernel estimation", Risk Cutting Edge, vol. 1, 2022. Incisive Media.
M. Felpel, J. Kienitz and T. McWalter, "Effective Markovian projection: Application to CMS spread options and mid-curve swaptions", Quantitative Finance, vol. 22, no. 6, pp. 1169–1192, 2022. Routledge.
M. Clemens, M. Henkel, F. Kasolis, M. Günther, H. De Gersem and S. Schöps, "Electromagnetic quasistatic field formulations of Darwin type", Preprint, pp. 1–7, 2022.
L. Teng, "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations", Applied Mathematics and Computation, vol. 426, pp. 127119, 2022. Elsevier.
M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher strong order methods for linear Itô SDEs on matrix Lie groups", BIT Numerical Mathematics, vol. 62, no. 3, pp. 1095–1119, 2022. Springer Netherlands.
N. Nowaczyk, J. Kienitz, S. K. Acar and Q. Liang, "How deep is your model? Network topology selection from a model validation perspective", Journal of Mathematics in Industry, vol. 12, no. 1, pp. 1, 2022. Springer Verlag.
M. Henkel, F. Kasolis, M. Clemens, M. Günther and S. Schöps, "Implicit gauging of electromagneto-quasistatic field formulations", IEEE Transactions on Magnetics, vol. 58, no. 9, pp. 1–4, 2022. IEEE.
T. A. McWalter, J. Kienitz, N. Nowaczyk, R. Rudd and S. K. Acar, "Dynamic initial margin estimation based on quantiles of Johnson distributions", Journal of Credit Risk, vol. 18, pp. 93–116, 2022. Incisive Media.
2021
P. Csomós, M. Ehrhardt and B. Farkas, "Operator splitting for abstract Cauchy problems with dynamical boundary condition", Operators and Matrices, vol. 15, no. 3, pp. 903–935, 2021. Element d.o.o.
L. Teng and W. Zhao, "High-order combined multi-step scheme for solving forward backward stochastic differential equations", Journal of Scientific Computing, vol. 87, no. 3, pp. 1–25, 2021. Springer New York.
A. Sandu, M. Günther and S. Roberts, "Linearly implicit GARK schemes", Applied Numerical Mathematics, vol. 161, pp. 286–310, 2021. Elsevier.

More information about #UniWuppertal: