Applied and Computational Mathematics (ACM)

Publications



2010
S. Schöps, A. Bartel, H. De Gersem and M. Günther, "DAE-index and convergence analysis of lumped electric circuits refined by 3-d magnetoquasistatic conductor models" in Scientific Computing in Electrical Engineering SCEE 2008, Roos, Janne and Costa, Luis R.J., Eds. Springer Berlin Heidelberg, 2010, pp. 341–348.
M. Striebel, A. Bartel and M. Günther, "Domain decomposition based multirating and its perspective in circuit simulation" in Progress in Industrial Mathematics at ECMI 2008, Fitt, Alistair D. and Norbury, John and Ockendon, Hilary and Wilson, Eddie, Eds. Springer Berlin Heidelberg, 2010, pp. 319–325.
T. Bechtold, D. Hohlfeld, E. B. Rudnyi and M. Günther, "Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction", Journal of Micromechanics and Microengineering, vol. 20, no. 4, pp. 045030, 2010. IOP Publishing.
M. Günther and A. Jüngel, "Eine kleine Einführung in MATLAB" in Finanzderivate mit MATLAB®: Mathematische Modellierung und numerische Simulation, Vieweg+ Teubner, 2010, pp. 319–331.
M. Günther and A. Jüngel, "Einige weiterführende Themen" in Finanzderivate mit MATLAB®: Mathematische Modellierung und numerische Simulation, Vieweg+ Teubner, 2010, pp. 227–318.
G. Alì, A. Bartel and M. Günther, "Existence and uniqueness for an elliptic PDAE model of integrated circuits", SIAM Journal on Applied Mathematics, vol. 70, no. 5, pp. 1587–1610, 2010. Society for Industrial and Applied Mathematics.
M. Ehrhardt, "Fast numerical methods for waves in periodic media" in Wave Propagation in Periodic Media, Ehrhardt, Matthias, Eds. Bentham Science Publishers, 2010, pp. 135–166.
M. Günther and A. Jüngel,Finanzderivate mit Matlab: Mathematische Modellierung und Numerische Simulation. .... 2. Auflage Vieweg+ Teubner, 2010.

ISBN: 978-3-8348-0879-0

2009
M. Ehrhardt, "Numerical simulation of quantum wave guides" in VLSI and Computer Architecture, Watanabe, K., Eds. Nova Science Publishers, 2009, pp. 115–138.
A. Bartel, S. Knorr and R. Pulch, "Wavelet-based adaptive grids for multirate partial differential-algebraic equations", Applied numerical mathematics, vol. 59, no. 3-4, pp. 495–506, 2009. North-Holland.
R. Pulch, "Variational methods for solving warped multirate partial differential algebraic equations", SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 1016–1034, 2009. Society for Industrial and Applied Mathematics Publications.
R. Pulch and C. Emmerich, "Polynomial chaos for simulating random volatilities", Mathematics and Computers in Simulation, vol. 80, no. 2, pp. 245–255, 2009. Elsevier.
R. Pulch, "Polynomial chaos for multirate partial differential algebraic equations with random parameters", Applied Numerical Mathematics, vol. 59, no. 10, pp. 2610–2624, 2009. Elsevier.
R. Pulch, "Polynomial chaos expansions for analysing oscillators with uncertainties" in 6th Vienna Conference on Mathematical Modelling (2009), TU Wien, 2009, pp. 2347–2356.
L. Šumichrast and M. Ehrhardt, "On the Transparent Boundary Conditions (TBC) for the parabolic wave equation" in ISTET 2009 - VXV International Symposium on Theoretical Engineering, VDE Verlag, 2009, pp. 1–1.
M. Ehrhardt, "Numerical simulation of waves in periodic structures", Communications in Computational Physics, vol. 5, no. 5, pp. 849–870, 2009. Global Science Press.
M. Ehrhardt, "A threestepped coordinated level set segmentation method for identifying atherosclerotic plaques on MR-images", Communications for Numerical Methods in Engineering, vol. 25, no. 6, pp. 615–638, 2009. John Wiley & Sons.
K. Mohaghegh, R. Pulch, M. Striebel and E. J. W. Maten, "Model order reduction for semi-explicit systems of differential algebraic equations" in 6th Vienna Conference on Mathematical Modelling (2009), TU Wien, 2009, pp. 1256–1265.
T. Sickenberger, E. Weinmüller and R. Winkler, "Local error estimates for moderately smooth problems: Part II - SDEs and SDAEs with small noise", BIT Numerical Mathematics, vol. 49, no. 1, pp. 217–245, 2009. Springer Netherlands.
M. Ehrhardt, "Implementing exact absorbing boundary condition for the linear one-dimensional Schrödinger problem with variable potential by Titchmarsh-Weyl theory", Preprint WIAS, no. 1426, 2009. Weierstraß-Institut für Angewandte Analysis und Stochastik.

More information about #UniWuppertal: