Applied and Computational Mathematics (ACM)

Publikationen



2022
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, "Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations" , Journal of Numerical Mathematics, 2022. De Gruyter.
L. Agasthya, A. Bartel, L. Biferale, M. Ehrhardt and F. Toschi, "Lagrangian instabilities in thermal convection with stable temperature profiles" , IMACM preprint 22/10, 2022.
M. Felpel, J. Kienitz and T. A. McWalter, "Effective Markovian projection: application to CMS spread options and mid-curve swaptions" , Quantitative Finance, vol. 22, no. 6, pp. 1169-1192, 2022. Routledge.
M. Ehrhardt, S. Pereselkov, V. Kuz'kin, I. Kaznacheev and P. Rybyanets, "Experimental Observation and Theoretical Analysis of the Low-frequency Source Interferogram and Hologram in Shallow Water" , IMACM preprint 22/08, 2022.
L. Teng, "Gradient boosting-based numerical methods for high dimensional backward stochastic differential equations" , Appl. Math. Comput., vol. 426, pp. 127119, 2022.
M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups" , BIT Numer. Math., Jan. 2022. Springer.
N. Nowaczyk, J. Kienitz, S. K. Acar and Q. Liang, "How deep is your model? Network topology selection from a model validation perspective" , JMI, vol. 12 (1), 2022.
M. Hutzenthaler, T. Kruse and T. A. Nguyen, "On the speed of convergence of Picard iterations of BSDEs" , Probability, Uncertainty and Quantitative Risk, vol. 7, no. 2, 2022. American Institute of Mathematical Sciences.
J. Ackermann, T. Kruse and L. Overbeck, "Inhomogeneous affine Volterra processes" , Stochastic Processes and their Applications, vol. 150, pp. 250--279, 2022. North-Holland.
M. E. J.R. Yusupov and D. Matrasulov, "Manakov system on metric graphs: Modeling the reflectionless propagation of vector solitons in networks" , IMACM preprint 22/12, 2022.
J. Jäschke, N. Skrepek and M. Ehrhardt, "Mixed-Dimensional Geometric Coupling of Port-{Hamiltonian} Systems" , IMACM preprint 22/04, 2022.
M. Hutzenthaler, T. Kruse and T. A. Nguyen, "Multilevel Picard approximations for McKean-Vlasov stochastic differential equations" , Journal of Mathematical Analysis and Applications, vol. 507, no. 1, pp. 125761, 2022. Academic Press.
A. Bartel and M. Günther, "Multirate Schemes -- An Answer of Numerical Analysis to a Demand from Applications" in Novel Mathematics Inspired by Industrial Challenges,Michael Günther and Wil Schilders, Eds. Springer, 2022, pp. 5--27.
L. Kapllani and L. Teng, "Multistep schemes for solving backward stochastic differential equations on {GPU}" , JMI, vol. 12, no. 5, 2022.
H. Fatoorehchi and M. Ehrhardt, "Numerical and semi-nume\-rical solutions of a modified Thévenin model for calculating terminal voltage of battery cells" , J. Energy Storage, vol. 45, pp. 103746, 2022. Elsevier.
{. S. Petrov, M. Ehrhardt and {. Y. Trofimov, "On the decomposition of the fundamental solution of the {Helmholtz} equation via solutions of iterative parabolic equations" , Asymptotic Analysis, vol. 126, no. 3-4, pp. 215--228, 2022. IOS Press.
2021
L. Teng and W. Zhao, "High-order combined multi-step scheme for solving forward backward stochastic differential equations" , JSC, vol. 87, no. 81, 2021.
L. Teng, "The Heston model with time-dependent correlation driven by isospectral flows" , Mathematics, vol. 9, no. 9, pp. 934, 2021.
K. Sabirov, J. Yusupov, M. Aripov, M. Ehrhardt and D. Matrasulov, "Reflectionless propagation of {Manakov} solitons on a line: A model based on the concept of transparent boundary conditions" , Phys. Rev. E, vol. 103, no. 4, pp. 043305, 2021. APS.
M. Hutzenthaler, A. Jentzen and T. Kruse, "Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities" , Foundations of Computational Mathematics, pp. 1--62, 2021. Springer US.
J. Ackermann, T. Kruse and M. Urusov, "Optimal trade execution in an order book model with stochastic liquidity parameters" , SIAM Journal on Financial Mathematics, vol. 12, no. 2, pp. 788--822, 2021. Society for Industrial and Applied Mathematics.
M. Hutzenthaler, A. Jentzen, T. Kruse and others, "Multilevel Picard iterations for solving smooth semilinear parabolic heat equations" , Partial Differential Equations and Applications, vol. 2, no. 6, pp. 1--31, 2021. Springer.
E. Viviani, L. Di Persio and M. Ehrhardt, "Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case" , Energies, vol. 14, no. 2, pp. 364, Jan. 2021. MDPI AG.
T. Kossaczk{\'a}, M. Ehrhardt and M. Günther, "Enhanced fifth order {WENO} shock-capturing schemes with deep learning" , Res. Appl. Math., vol. 12, pp. 100201, 2021. Elsevier.
A. Clevenhaus, C. Totzeck and M. Ehrhardt, "A Gradient Descent Algorithm for the {Heston} Model" , IMACM preprint 21/32, 2021.

Weitere Infos über #UniWuppertal: