Publikationen
- M. Ehrhardt, "Positive Schemes for Air Pollution Problems, Optimal Location of Industrial Enterprises and Optimization of their Emissions".
- M. Carmen Calvo-Garrido, M. Ehrhardt and C. Vázquez, "Pricing swing options in electricity markets with two stochastic factors: PIDE modeling and numerical solution" in 3rd International Conference on Computational Finance (ICCF2019). pp. 89.
- P. Putek, E. Ter Maten and M. Günther, "Reliability-based Low Torque Ripple Design of Permanent Magnet Machine".
- M. Günther, M. Ehrhardt, F. Knechtli, D. Shcherbakov, M. Striebel and M. Wandelt, "Symmetric \& Volume Preserving Projection Schemes".
- P. Putek and M. Günther, "Topology Optimization and Analysis of a PM synchronous Machine for Electrical Automobiles".
- M. Ehrhardt, "Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings".
- M. Ehrhardt, M. Günther, H. Brunner and A. Dalhoff, "Vorhersage-Modelle am Beispiel des Corona-Virus COVID-19".
- 2024
- K. Schaefers, M. Peardon and M. Guenther, "A modified Cayley transform for SU(3)", 2024.
- A. Bartel and M. Schaller, "Goal-oriented time adaptivity for port-{H}amiltonian systems", 2024.
- A. Clevenhaus, C. Totzeck and M. Ehrhardt, "A gradient-based calibration method for the Heston model", International Journal of Computer Mathematics, 2024.
- J. Ackermann, M. Ehrhardt, T. Kruse and A. Tordeux, "Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems", arXiv preprint arXiv:2401.17954, 2024.
- J. Lorenz, T. Zwerschke, M. Guenther and K. Schaefers, "Operator splitting for coupled linear port-Hamiltonian systems", 2024.
- K. Schäfers, J. Finkenrath, M. Günther and F. Knechtli, "Hessian-free force-gradient integrators", 2024.
- A. Bartel, M. Diab, A. Frommer, G\"unther and N. Marheineke,Splitting Techniques for DAEs with port-Hamiltonian Applications, 2024.
- M. Ehrhardt, T. Kruse and A. Tordeux, "Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension", ESAIM: Math. Model. Numer. Anal., 2024.
- T. Kossaczká, A. D. Jagtap and M. Ehrhardt, "Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators", Physics of Fluids, vol. 36, no. 3, 2024. AIP Publishing.
- J. Ackermann, A. Jentzen, B. Kuckuck and J. L. Padgett, "Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations", arXiv:2406.10876, pp. 64 pages, 2024.
- F. Klass, A. Gabbana and A. Bartel, "Characteristic boundary condition for thermal lattice Boltzmann methods", Computers & Mathematics with Applications, vol. 157, pp. 195-208, Jul. 2024.
- M. T. Hoang and M. Ehrhardt, "A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator--prey model", Journal of Computational and Applied Mathematics, pp. 115752, 2024. Elsevier.
- 2023
- A. Clevenhaus, C. Totzeck and M. Ehrhardt, "A numerical study of the impact of variance boundary conditions for the Heston model", IMACM preprint 23/11, Jul. 2023.
- A. Tyshchenko, S. Kozitskiy, M. Kazak and P. Petrov, "Modern methods of sound propagation modelling based on the expansion of acoustic fields over normal modes", Acoustical Physics (accepted, to appear in 2023), vol. 69, no. 5, Jun. 2023.
- K. Schäfers, A. Bartel, M. Günther and C. Hachtel, "Spline-oriented inter/extrapolation-based multirate schemes of higher order", Applied Mathematics Letters, vol. 136, pp. 108464, 2023. Pergamon.
- A. Bartel, M. Clemens, M. Günther, B. Jacob and T. Reis, "Port-{H}amiltonian Systems Modelling in Electrical Engineering", arXiv preprint arXiv:2301.02024, 2023.
- F. Heldmann, S. Berkhahn, M. Ehrhardt and K. Klamroth, "PINN training using biobjective optimization: The trade-off between data loss and residual loss", arXiv preprint arXiv:2302.01810, Jun. 2023.
- A. Frommer, M. Günther, B. Liljegren-Sailer and N. Marheineke, "Operator splitting for port-Hamiltonian systems", arXiv preprint arXiv:2304.01766, 2023.